| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkRuntimeEffectPriv.h" |
| #include "src/gpu/GrFragmentProcessor.h" |
| #include "src/gpu/GrPipeline.h" |
| #include "src/gpu/GrProcessorAnalysis.h" |
| #include "src/gpu/effects/GrBlendFragmentProcessor.h" |
| #include "src/gpu/effects/GrSkSLFP.h" |
| #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/glsl/GrGLSLUniformHandler.h" |
| |
| bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const { |
| if (this->classID() != that.classID()) { |
| return false; |
| } |
| if (this->usesVaryingCoordsDirectly() != that.usesVaryingCoordsDirectly()) { |
| return false; |
| } |
| if (!this->onIsEqual(that)) { |
| return false; |
| } |
| if (this->numChildProcessors() != that.numChildProcessors()) { |
| return false; |
| } |
| for (int i = 0; i < this->numChildProcessors(); ++i) { |
| auto thisChild = this->childProcessor(i), |
| thatChild = that .childProcessor(i); |
| if (SkToBool(thisChild) != SkToBool(thatChild)) { |
| return false; |
| } |
| if (thisChild && !thisChild->isEqual(*thatChild)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const { |
| this->visitTextureEffects([&func](const GrTextureEffect& te) { |
| func(te.view().proxy(), te.samplerState().mipmapped()); |
| }); |
| } |
| |
| void GrFragmentProcessor::visitTextureEffects( |
| const std::function<void(const GrTextureEffect&)>& func) const { |
| if (auto* te = this->asTextureEffect()) { |
| func(*te); |
| } |
| for (auto& child : fChildProcessors) { |
| if (child) { |
| child->visitTextureEffects(func); |
| } |
| } |
| } |
| |
| GrTextureEffect* GrFragmentProcessor::asTextureEffect() { |
| if (this->classID() == kGrTextureEffect_ClassID) { |
| return static_cast<GrTextureEffect*>(this); |
| } |
| return nullptr; |
| } |
| |
| const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const { |
| if (this->classID() == kGrTextureEffect_ClassID) { |
| return static_cast<const GrTextureEffect*>(this); |
| } |
| return nullptr; |
| } |
| |
| #if GR_TEST_UTILS |
| static void recursive_dump_tree_info(const GrFragmentProcessor& fp, |
| SkString indent, |
| SkString* text) { |
| for (int index = 0; index < fp.numChildProcessors(); ++index) { |
| text->appendf("\n%s(#%d) -> ", indent.c_str(), index); |
| if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) { |
| text->append(childFP->dumpInfo()); |
| indent.append("\t"); |
| recursive_dump_tree_info(*childFP, indent, text); |
| } else { |
| text->append("null"); |
| } |
| } |
| } |
| |
| SkString GrFragmentProcessor::dumpTreeInfo() const { |
| SkString text = this->dumpInfo(); |
| recursive_dump_tree_info(*this, SkString("\t"), &text); |
| text.append("\n"); |
| return text; |
| } |
| #endif |
| |
| std::unique_ptr<GrGLSLFragmentProcessor> GrFragmentProcessor::makeProgramImpl() const { |
| std::unique_ptr<GrGLSLFragmentProcessor> glFragProc = this->onMakeProgramImpl(); |
| glFragProc->fChildProcessors.push_back_n(fChildProcessors.count()); |
| for (int i = 0; i < fChildProcessors.count(); ++i) { |
| glFragProc->fChildProcessors[i] = fChildProcessors[i] |
| ? fChildProcessors[i]->makeProgramImpl() |
| : nullptr; |
| } |
| return glFragProc; |
| } |
| |
| void GrFragmentProcessor::addAndPushFlagToChildren(PrivateFlags flag) { |
| // This propagates down, so if we've already marked it, all our children should have it too |
| if (!(fFlags & flag)) { |
| fFlags |= flag; |
| for (auto& child : fChildProcessors) { |
| if (child) { |
| child->addAndPushFlagToChildren(flag); |
| } |
| } |
| } |
| #ifdef SK_DEBUG |
| for (auto& child : fChildProcessors) { |
| SkASSERT(!child || (child->fFlags & flag)); |
| } |
| #endif |
| } |
| |
| int GrFragmentProcessor::numNonNullChildProcessors() const { |
| return std::count_if(fChildProcessors.begin(), fChildProcessors.end(), |
| [](const auto& c) { return c != nullptr; }); |
| } |
| |
| #ifdef SK_DEBUG |
| bool GrFragmentProcessor::isInstantiated() const { |
| bool result = true; |
| this->visitTextureEffects([&result](const GrTextureEffect& te) { |
| if (!te.texture()) { |
| result = false; |
| } |
| }); |
| return result; |
| } |
| #endif |
| |
| void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child, |
| SkSL::SampleUsage sampleUsage) { |
| if (!child) { |
| fChildProcessors.push_back(nullptr); |
| return; |
| } |
| |
| // The child should not have been attached to another FP already and not had any sampling |
| // strategy set on it. |
| SkASSERT(!child->fParent && !child->sampleUsage().isSampled() && |
| !child->isSampledWithExplicitCoords() && !child->hasPerspectiveTransform()); |
| |
| // Configure child's sampling state first |
| child->fUsage = sampleUsage; |
| |
| if (sampleUsage.isExplicit()) { |
| child->addAndPushFlagToChildren(kSampledWithExplicitCoords_Flag); |
| } |
| |
| // Push perspective matrix type to children |
| if (sampleUsage.fHasPerspective) { |
| child->addAndPushFlagToChildren(kNetTransformHasPerspective_Flag); |
| } |
| |
| // Propagate the "will read dest-color" flag up to parent FPs. |
| if (child->willReadDstColor()) { |
| this->setWillReadDstColor(); |
| } |
| |
| // If the child is not sampled explicitly and not already accessing sample coords directly |
| // (through reference or variable matrix expansion), then mark that this FP tree relies on |
| // coordinates at a lower level. If the child is sampled with explicit coordinates and |
| // there isn't any other direct reference to the sample coords, we halt the upwards propagation |
| // because it means this FP is determining coordinates on its own. |
| if (!child->isSampledWithExplicitCoords()) { |
| if ((child->fFlags & kUsesSampleCoordsDirectly_Flag || |
| child->fFlags & kUsesSampleCoordsIndirectly_Flag)) { |
| fFlags |= kUsesSampleCoordsIndirectly_Flag; |
| } |
| } |
| |
| fRequestedFeatures |= child->fRequestedFeatures; |
| |
| // Record that the child is attached to us; this FP is the source of any uniform data needed |
| // to evaluate the child sample matrix. |
| child->fParent = this; |
| fChildProcessors.push_back(std::move(child)); |
| |
| // Validate: our sample strategy comes from a parent we shouldn't have yet. |
| SkASSERT(!this->isSampledWithExplicitCoords() && !this->hasPerspectiveTransform() && |
| !fUsage.isSampled() && !fParent); |
| } |
| |
| void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) { |
| for (int i = 0; i < src.numChildProcessors(); ++i) { |
| if (auto fp = src.childProcessor(i)) { |
| this->registerChild(fp->clone(), fp->sampleUsage()); |
| } else { |
| this->registerChild(nullptr); |
| } |
| } |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) { |
| // Use ColorFilter signature/factory to get the constant output for constant input optimization |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( |
| uniform half4 color; |
| half4 main(half4 inColor) { return color; } |
| )"); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr, |
| color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput |
| : GrSkSLFP::OptFlags::kNone, |
| "color", color); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulChildByInputAlpha( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| if (!fp) { |
| return nullptr; |
| } |
| return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kDstIn); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| if (!fp) { |
| return nullptr; |
| } |
| return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kSrcIn); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateAlpha( |
| std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) { |
| auto colorFP = MakeColor(color); |
| return GrBlendFragmentProcessor::Make( |
| std::move(colorFP), std::move(inputFP), SkBlendMode::kSrcIn, |
| GrBlendFragmentProcessor::BlendBehavior::kSkModeBehavior); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA( |
| std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) { |
| auto colorFP = MakeColor(color); |
| return GrBlendFragmentProcessor::Make( |
| std::move(colorFP), std::move(inputFP), SkBlendMode::kModulate, |
| GrBlendFragmentProcessor::BlendBehavior::kSkModeBehavior); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| SkASSERT(fp); |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( |
| half4 main(half4 inColor) { |
| return saturate(inColor); |
| } |
| )"); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make( |
| effect, "Clamp", std::move(fp), GrSkSLFP::OptFlags::kPreservesOpaqueInput); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampPremulOutput( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| SkASSERT(fp); |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( |
| half4 main(half4 inColor) { |
| half alpha = saturate(inColor.a); |
| return half4(clamp(inColor.rgb, 0, alpha), alpha); |
| } |
| )"); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make( |
| effect, "ClampPremul", std::move(fp), GrSkSLFP::OptFlags::kPreservesOpaqueInput); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput( |
| std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle) { |
| class SwizzleFragmentProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp, |
| const GrSwizzle& swizzle) { |
| return std::unique_ptr<GrFragmentProcessor>( |
| new SwizzleFragmentProcessor(std::move(fp), swizzle)); |
| } |
| |
| const char* name() const override { return "Swizzle"; } |
| const GrSwizzle& swizzle() const { return fSwizzle; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return Make(this->childProcessor(0)->clone(), fSwizzle); |
| } |
| |
| private: |
| SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle) |
| : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get())) |
| , fSwizzle(swizzle) { |
| this->registerChild(std::move(fp)); |
| } |
| |
| std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override { |
| class GLFP : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs& args) override { |
| SkString childColor = this->invokeChild(0, args); |
| |
| const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>(); |
| const GrSwizzle& swizzle = sfp.swizzle(); |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| fragBuilder->codeAppendf("return %s.%s;", |
| childColor.c_str(), swizzle.asString().c_str()); |
| } |
| }; |
| return std::make_unique<GLFP>(); |
| } |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { |
| b->add32(fSwizzle.asKey()); |
| } |
| |
| bool onIsEqual(const GrFragmentProcessor& other) const override { |
| const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>(); |
| return fSwizzle == sfp.fSwizzle; |
| } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override { |
| return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input)); |
| } |
| |
| GrSwizzle fSwizzle; |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| if (!fp) { |
| return nullptr; |
| } |
| if (GrSwizzle::RGBA() == swizzle) { |
| return fp; |
| } |
| return SwizzleFragmentProcessor::Make(std::move(fp), swizzle); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeInputPremulAndMulByOutput( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| class PremulFragmentProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make( |
| std::unique_ptr<GrFragmentProcessor> processor) { |
| return std::unique_ptr<GrFragmentProcessor>( |
| new PremulFragmentProcessor(std::move(processor))); |
| } |
| |
| const char* name() const override { return "Premultiply"; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return Make(this->childProcessor(0)->clone()); |
| } |
| |
| private: |
| PremulFragmentProcessor(std::unique_ptr<GrFragmentProcessor> processor) |
| : INHERITED(kPremulFragmentProcessor_ClassID, OptFlags(processor.get())) { |
| this->registerChild(std::move(processor)); |
| } |
| |
| std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override { |
| class GLFP : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs& args) override { |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString temp = this->invokeChild(/*childIndex=*/0, "half4(1)", args); |
| fragBuilder->codeAppendf("half4 color = %s;", temp.c_str()); |
| fragBuilder->codeAppendf("color.rgb *= %s.rgb;", args.fInputColor); |
| fragBuilder->codeAppendf("return color * %s.a;", args.fInputColor); |
| } |
| }; |
| return std::make_unique<GLFP>(); |
| } |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| |
| static OptimizationFlags OptFlags(const GrFragmentProcessor* inner) { |
| OptimizationFlags flags = kNone_OptimizationFlags; |
| if (inner->preservesOpaqueInput()) { |
| flags |= kPreservesOpaqueInput_OptimizationFlag; |
| } |
| if (inner->hasConstantOutputForConstantInput()) { |
| flags |= kConstantOutputForConstantInput_OptimizationFlag; |
| } |
| return flags; |
| } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override { |
| SkPMColor4f childColor = ConstantOutputForConstantInput(this->childProcessor(0), |
| SK_PMColor4fWHITE); |
| SkPMColor4f premulInput = SkColor4f{ input.fR, input.fG, input.fB, input.fA }.premul(); |
| return premulInput * childColor; |
| } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| if (!fp) { |
| return nullptr; |
| } |
| return PremulFragmentProcessor::Make(std::move(fp)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput( |
| std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color, bool useUniform) { |
| if (!fp) { |
| return nullptr; |
| } |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( |
| uniform colorFilter fp; // Declared as colorFilter so we can use sample(..., color) |
| uniform half4 color; |
| half4 main(half4 inColor) { |
| return sample(fp, color); |
| } |
| )"); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr, |
| color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput |
| : GrSkSLFP::OptFlags::kNone, |
| "fp", std::move(fp), |
| "color", GrSkSLFP::SpecializeIf(!useUniform, color)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose( |
| std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) { |
| class ComposeProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f, |
| std::unique_ptr<GrFragmentProcessor> g) { |
| return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f), |
| std::move(g))); |
| } |
| |
| const char* name() const override { return "Compose"; } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this)); |
| } |
| |
| private: |
| std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override { |
| class GLFP : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs& args) override { |
| SkString result = this->invokeChild(1, args); // g(x) |
| result = this->invokeChild(0, result.c_str(), args); // f(g(x)) |
| args.fFragBuilder->codeAppendf("return %s;", result.c_str()); |
| } |
| }; |
| return std::make_unique<GLFP>(); |
| } |
| |
| ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f, |
| std::unique_ptr<GrFragmentProcessor> g) |
| : INHERITED(kSeriesFragmentProcessor_ClassID, |
| f->optimizationFlags() & g->optimizationFlags()) { |
| this->registerChild(std::move(f)); |
| this->registerChild(std::move(g)); |
| } |
| |
| ComposeProcessor(const ComposeProcessor& that) |
| : INHERITED(kSeriesFragmentProcessor_ClassID, that.optimizationFlags()) { |
| this->cloneAndRegisterAllChildProcessors(that); |
| } |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| |
| SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override { |
| SkPMColor4f color = inColor; |
| color = ConstantOutputForConstantInput(this->childProcessor(1), color); |
| color = ConstantOutputForConstantInput(this->childProcessor(0), color); |
| return color; |
| } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| // Allow either of the composed functions to be null. |
| if (f == nullptr) { |
| return g; |
| } |
| if (g == nullptr) { |
| return f; |
| } |
| |
| // Run an optimization pass on this composition. |
| GrProcessorAnalysisColor inputColor; |
| inputColor.setToUnknown(); |
| |
| std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)}; |
| GrColorFragmentProcessorAnalysis info(inputColor, series, SK_ARRAY_COUNT(series)); |
| |
| SkPMColor4f knownColor; |
| int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor); |
| switch (leadingFPsToEliminate) { |
| default: |
| // We shouldn't eliminate more than we started with. |
| SkASSERT(leadingFPsToEliminate <= 2); |
| [[fallthrough]]; |
| case 0: |
| // Compose the two processors as requested. |
| return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0])); |
| case 1: |
| // Replace the first processor with a constant color. |
| return ComposeProcessor::Make(/*f=*/std::move(series[1]), |
| /*g=*/MakeColor(knownColor)); |
| case 2: |
| // Replace the entire composition with a constant color. |
| return MakeColor(knownColor); |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix( |
| std::unique_ptr<GrFragmentProcessor> child, |
| const float matrix[20], |
| bool unpremulInput, |
| bool clampRGBOutput, |
| bool premulOutput) { |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( |
| uniform half4x4 m; |
| uniform half4 v; |
| uniform int unpremulInput; // always specialized |
| uniform int clampRGBOutput; // always specialized |
| uniform int premulOutput; // always specialized |
| half4 main(half4 color) { |
| if (bool(unpremulInput)) { |
| color = unpremul(color); |
| } |
| color = m * color + v; |
| if (bool(clampRGBOutput)) { |
| color = saturate(color); |
| } else { |
| color.a = saturate(color.a); |
| } |
| if (bool(premulOutput)) { |
| color.rgb *= color.a; |
| } |
| return color; |
| } |
| )"); |
| SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); |
| |
| SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3], |
| matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8], |
| matrix[10], matrix[11], matrix[12], matrix[13], |
| matrix[15], matrix[16], matrix[17], matrix[18]); |
| SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]}; |
| return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone, |
| "m", m44, |
| "v", v4, |
| "unpremulInput", GrSkSLFP::Specialize(unpremulInput ? 1 : 0), |
| "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0), |
| "premulOutput", GrSkSLFP::Specialize(premulOutput ? 1 : 0)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DestColor() { |
| class DestColorProcessor : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make() { |
| return std::unique_ptr<GrFragmentProcessor>(new DestColorProcessor()); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); } |
| |
| const char* name() const override { return "DestColor"; } |
| |
| private: |
| std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override { |
| class GLFP : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs& args) override { |
| const char* destColor = args.fFragBuilder->dstColor(); |
| args.fFragBuilder->codeAppendf("return %s;", destColor); |
| } |
| }; |
| return std::make_unique<GLFP>(); |
| } |
| |
| DestColorProcessor() : INHERITED(kDestColorProcessor_ClassID, kNone_OptimizationFlags) { |
| this->setWillReadDstColor(); |
| } |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {} |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return true; } |
| |
| using INHERITED = GrFragmentProcessor; |
| }; |
| |
| return DestColorProcessor::Make(); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace( |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"( |
| uniform shader fp; |
| half4 main(float2 xy) { |
| return sample(fp, sk_FragCoord.xy); |
| } |
| )"); |
| return GrSkSLFP::Make(effect, "DeviceSpace", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kAll, |
| "fp", std::move(fp)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| #define CLIP_EDGE_SKSL \ |
| "const int kFillBW = 0;" \ |
| "const int kFillAA = 1;" \ |
| "const int kInverseFillBW = 2;" \ |
| "const int kInverseFillAA = 3;" |
| |
| static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0); |
| static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1); |
| static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2); |
| static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3); |
| |
| std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect( |
| std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) { |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"( |
| uniform int edgeType; // GrClipEdgeType, specialized |
| uniform float4 rectUniform; |
| |
| half4 main(float2 xy, half4 inColor) { |
| half coverage; |
| if (edgeType == kFillBW || edgeType == kInverseFillBW) { |
| // non-AA |
| coverage = all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw), |
| float4(rectUniform.xy, sk_FragCoord.xy))) ? 1 : 0; |
| } else { |
| // compute coverage relative to left and right edges, add, then subtract 1 to |
| // account for double counting. And similar for top/bottom. |
| half4 dists4 = clamp(half4(1, 1, -1, -1) * |
| half4(sk_FragCoord.xyxy - rectUniform), 0, 1); |
| half2 dists2 = dists4.xy + dists4.zw - 1; |
| coverage = dists2.x * dists2.y; |
| } |
| |
| if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) { |
| coverage = 1.0 - coverage; |
| } |
| |
| return inColor * coverage; |
| } |
| )"); |
| |
| SkASSERT(rect.isSorted()); |
| // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5 |
| // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect. |
| SkRect rectUniform = GrProcessorEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect; |
| |
| return GrSkSLFP::Make(effect, "Rect", std::move(inputFP), |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)), |
| "rectUniform", rectUniform); |
| } |
| |
| GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP, |
| GrClipEdgeType edgeType, |
| SkPoint center, |
| float radius) { |
| // A radius below half causes the implicit insetting done by this processor to become |
| // inverted. We could handle this case by making the processor code more complicated. |
| if (radius < .5f && GrProcessorEdgeTypeIsInverseFill(edgeType)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"( |
| uniform int edgeType; // GrClipEdgeType, specialized |
| // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular |
| // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills. |
| uniform float4 circle; |
| |
| half4 main(float2 xy, half4 inColor) { |
| // TODO: Right now the distance to circle calculation is performed in a space normalized |
| // to the radius and then denormalized. This is to mitigate overflow on devices that |
| // don't have full float. |
| half d; |
| if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) { |
| d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z); |
| } else { |
| d = half((1.0 - length((circle.xy - sk_FragCoord.xy) * circle.w)) * circle.z); |
| } |
| if (edgeType == kFillAA || edgeType == kInverseFillAA) { |
| return inColor * saturate(d); |
| } else { |
| return d > 0.5 ? inColor : half4(0); |
| } |
| } |
| )"); |
| |
| SkScalar effectiveRadius = radius; |
| if (GrProcessorEdgeTypeIsInverseFill(edgeType)) { |
| effectiveRadius -= 0.5f; |
| // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader. |
| effectiveRadius = std::max(0.001f, effectiveRadius); |
| } else { |
| effectiveRadius += 0.5f; |
| } |
| SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)}; |
| |
| return GrFPSuccess(GrSkSLFP::Make(effect, "Circle", std::move(inputFP), |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)), |
| "circle", circle)); |
| } |
| |
| GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP, |
| GrClipEdgeType edgeType, |
| SkPoint center, |
| SkPoint radii, |
| const GrShaderCaps& caps) { |
| const bool medPrecision = !caps.floatIs32Bits(); |
| |
| // Small radii produce bad results on devices without full float. |
| if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| // Very narrow ellipses produce bad results on devices without full float |
| if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| // Very large ellipses produce bad results on devices without full float |
| if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) { |
| return GrFPFailure(std::move(inputFP)); |
| } |
| |
| static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, CLIP_EDGE_SKSL R"( |
| uniform int edgeType; // GrClipEdgeType, specialized |
| uniform int medPrecision; // !sk_Caps.floatIs32Bits, specialized |
| |
| uniform float4 ellipse; |
| uniform float2 scale; // only for medPrecision |
| |
| half4 main(float2 xy, half4 inColor) { |
| // d is the offset to the ellipse center |
| float2 d = sk_FragCoord.xy - ellipse.xy; |
| // If we're on a device with a "real" mediump then we'll do the distance computation in |
| // a space that is normalized by the larger radius or 128, whichever is smaller. The |
| // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are |
| // already in this normalized space. The center is not. |
| if (bool(medPrecision)) { |
| d *= scale.y; |
| } |
| float2 Z = d * ellipse.zw; |
| // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
| float implicit = dot(Z, d) - 1; |
| // grad_dot is the squared length of the gradient of the implicit. |
| float grad_dot = 4 * dot(Z, Z); |
| // Avoid calling inversesqrt on zero. |
| if (bool(medPrecision)) { |
| grad_dot = max(grad_dot, 6.1036e-5); |
| } else { |
| grad_dot = max(grad_dot, 1.1755e-38); |
| } |
| float approx_dist = implicit * inversesqrt(grad_dot); |
| if (bool(medPrecision)) { |
| approx_dist *= scale.x; |
| } |
| |
| half alpha; |
| if (edgeType == kFillBW) { |
| alpha = approx_dist > 0.0 ? 0.0 : 1.0; |
| } else if (edgeType == kFillAA) { |
| alpha = saturate(0.5 - half(approx_dist)); |
| } else if (edgeType == kInverseFillBW) { |
| alpha = approx_dist > 0.0 ? 1.0 : 0.0; |
| } else { // edgeType == kInverseFillAA |
| alpha = saturate(0.5 + half(approx_dist)); |
| } |
| return inColor * alpha; |
| } |
| )"); |
| |
| float invRXSqd; |
| float invRYSqd; |
| SkV2 scale = {1, 1}; |
| // If we're using a scale factor to work around precision issues, choose the larger radius as |
| // the scale factor. The inv radii need to be pre-adjusted by the scale factor. |
| if (medPrecision) { |
| if (radii.fX > radii.fY) { |
| invRXSqd = 1.f; |
| invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY); |
| scale = {radii.fX, 1.f / radii.fX}; |
| } else { |
| invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX); |
| invRYSqd = 1.f; |
| scale = {radii.fY, 1.f / radii.fY}; |
| } |
| } else { |
| invRXSqd = 1.f / (radii.fX * radii.fX); |
| invRYSqd = 1.f / (radii.fY * radii.fY); |
| } |
| SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd}; |
| |
| return GrFPSuccess(GrSkSLFP::Make(effect, "Ellipse", std::move(inputFP), |
| GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha, |
| "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)), |
| "medPrecision", GrSkSLFP::Specialize<int>(medPrecision), |
| "ellipse", ellipse, |
| "scale", scale)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrFragmentProcessor::CIter::CIter(const GrPaint& paint) { |
| if (paint.hasCoverageFragmentProcessor()) { |
| fFPStack.push_back(paint.getCoverageFragmentProcessor()); |
| } |
| if (paint.hasColorFragmentProcessor()) { |
| fFPStack.push_back(paint.getColorFragmentProcessor()); |
| } |
| } |
| |
| GrFragmentProcessor::CIter::CIter(const GrPipeline& pipeline) { |
| for (int i = pipeline.numFragmentProcessors() - 1; i >= 0; --i) { |
| fFPStack.push_back(&pipeline.getFragmentProcessor(i)); |
| } |
| } |
| |
| GrFragmentProcessor::CIter& GrFragmentProcessor::CIter::operator++() { |
| SkASSERT(!fFPStack.empty()); |
| const GrFragmentProcessor* back = fFPStack.back(); |
| fFPStack.pop_back(); |
| for (int i = back->numChildProcessors() - 1; i >= 0; --i) { |
| if (auto child = back->childProcessor(i)) { |
| fFPStack.push_back(child); |
| } |
| } |
| return *this; |
| } |
| |