| /* | 
 |  * Copyright 2012 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "SkIntersections.h" | 
 | #include "SkOpAngle.h" | 
 | #include "SkOpSegment.h" | 
 | #include "SkPathOpsCurve.h" | 
 | #include "SkTSort.h" | 
 |  | 
 | #if DEBUG_ANGLE | 
 | #include "SkString.h" | 
 | #endif | 
 |  | 
 | /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest | 
 |    positive y. The largest angle has a positive x and a zero y. */ | 
 |  | 
 | #if DEBUG_ANGLE | 
 |     static bool CompareResult(SkString* bugOut, int append, bool compare) { | 
 |         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append); | 
 |         return compare; | 
 |     } | 
 |  | 
 |     #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare) | 
 | #else | 
 |     #define COMPARE_RESULT(append, compare) compare | 
 | #endif | 
 |  | 
 | /*             quarter angle values for sector | 
 |  | 
 | 31   x > 0, y == 0              horizontal line (to the right) | 
 | 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y | 
 | 1    x > 0, y > 0, x > y        nearer horizontal angle | 
 | 2                  x + e == y   quad/cubic 45 going horiz | 
 | 3    x > 0, y > 0, x == y       45 angle | 
 | 4                  x == y + e   quad/cubic 45 going vert | 
 | 5    x > 0, y > 0, x < y        nearer vertical angle | 
 | 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x | 
 | 7    x == 0, y > 0              vertical line (to the top) | 
 |  | 
 |                                       8  7  6 | 
 |                                  9       |       5 | 
 |                               10         |          4 | 
 |                             11           |            3 | 
 |                           12  \          |           / 2 | 
 |                          13              |              1 | 
 |                         14               |               0 | 
 |                         15 --------------+------------- 31 | 
 |                         16               |              30 | 
 |                          17              |             29 | 
 |                           18  /          |          \ 28 | 
 |                             19           |           27 | 
 |                               20         |         26 | 
 |                                  21      |      25 | 
 |                                      22 23 24 | 
 | */ | 
 |  | 
 | // return true if lh < this < rh | 
 | bool SkOpAngle::after(const SkOpAngle* test) const { | 
 |     const SkOpAngle& lh = *test; | 
 |     const SkOpAngle& rh = *lh.fNext; | 
 |     SkASSERT(&lh != &rh); | 
 | #if DEBUG_ANGLE | 
 |     SkString bugOut; | 
 |     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
 |                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
 |                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, | 
 |             lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd, | 
 |             lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd), | 
 |             fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart), | 
 |             fSegment->t(fEnd), | 
 |             rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd, | 
 |             rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); | 
 | #endif | 
 |     if (lh.fComputeSector && !const_cast<SkOpAngle&>(lh).computeSector()) { | 
 |         return COMPARE_RESULT(1, true); | 
 |     } | 
 |     if (fComputeSector && !const_cast<SkOpAngle*>(this)->computeSector()) { | 
 |         return COMPARE_RESULT(2, true); | 
 |     } | 
 |     if (rh.fComputeSector && !const_cast<SkOpAngle&>(rh).computeSector()) { | 
 |         return COMPARE_RESULT(3, true); | 
 |     } | 
 | #if DEBUG_ANGLE  // reset bugOut with computed sectors | 
 |     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
 |                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" | 
 |                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, | 
 |             lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd, | 
 |             lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd), | 
 |             fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart), | 
 |             fSegment->t(fEnd), | 
 |             rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd, | 
 |             rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd)); | 
 | #endif | 
 |     bool ltrOverlap = (lh.fSectorMask | rh.fSectorMask) & fSectorMask; | 
 |     bool lrOverlap = lh.fSectorMask & rh.fSectorMask; | 
 |     int lrOrder;  // set to -1 if either order works | 
 |     if (!lrOverlap) {  // no lh/rh sector overlap | 
 |         if (!ltrOverlap) {  // no lh/this/rh sector overlap | 
 |             return COMPARE_RESULT(4,  (lh.fSectorEnd > rh.fSectorStart) | 
 |                     ^ (fSectorStart > lh.fSectorEnd) ^ (fSectorStart > rh.fSectorStart)); | 
 |         } | 
 |         int lrGap = (rh.fSectorStart - lh.fSectorStart + 32) & 0x1f; | 
 |         /* A tiny change can move the start +/- 4. The order can only be determined if | 
 |            lr gap is not 12 to 20 or -12 to -20. | 
 |                -31 ..-21      1 | 
 |                -20 ..-12     -1 | 
 |                -11 .. -1      0 | 
 |                  0          shouldn't get here | 
 |                 11 ..  1      1 | 
 |                 12 .. 20     -1 | 
 |                 21 .. 31      0 | 
 |          */ | 
 |         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1; | 
 |     } else { | 
 |         lrOrder = (int) lh.orderable(rh); | 
 |         if (!ltrOverlap) { | 
 |             return COMPARE_RESULT(5, !lrOrder); | 
 |         } | 
 |     } | 
 |     int ltOrder; | 
 |     SkASSERT((lh.fSectorMask & fSectorMask) || (rh.fSectorMask & fSectorMask)); | 
 |     if (lh.fSectorMask & fSectorMask) { | 
 |         ltOrder = (int) lh.orderable(*this); | 
 |     } else { | 
 |         int ltGap = (fSectorStart - lh.fSectorStart + 32) & 0x1f; | 
 |         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1; | 
 |     } | 
 |     int trOrder; | 
 |     if (rh.fSectorMask & fSectorMask) { | 
 |         trOrder = (int) orderable(rh); | 
 |     } else { | 
 |         int trGap = (rh.fSectorStart - fSectorStart + 32) & 0x1f; | 
 |         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1; | 
 |     } | 
 |     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) { | 
 |         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder)); | 
 |     } | 
 |     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0); | 
 | // There's not enough information to sort. Get the pairs of angles in opposite planes. | 
 | // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs. | 
 |     // FIXME : once all variants are understood, rewrite this more simply | 
 |     if (ltOrder == 0 && lrOrder == 0) { | 
 |         SkASSERT(trOrder < 0); | 
 |         // FIXME : once this is verified to work, remove one opposite angle call | 
 |         SkDEBUGCODE(bool lrOpposite = lh.oppositePlanes(rh)); | 
 |         bool ltOpposite = lh.oppositePlanes(*this); | 
 |         SkASSERT(lrOpposite != ltOpposite); | 
 |         return COMPARE_RESULT(8, ltOpposite); | 
 |     } else if (ltOrder == 1 && trOrder == 0) { | 
 |         SkASSERT(lrOrder < 0); | 
 |         SkDEBUGCODE(bool ltOpposite = lh.oppositePlanes(*this)); | 
 |         bool trOpposite = oppositePlanes(rh); | 
 |         SkASSERT(ltOpposite != trOpposite); | 
 |         return COMPARE_RESULT(9, trOpposite); | 
 |     } else if (lrOrder == 1 && trOrder == 1) { | 
 |         SkASSERT(ltOrder < 0); | 
 |         SkDEBUGCODE(bool trOpposite = oppositePlanes(rh)); | 
 |         bool lrOpposite = lh.oppositePlanes(rh); | 
 |         SkASSERT(lrOpposite != trOpposite); | 
 |         return COMPARE_RESULT(10, lrOpposite); | 
 |     } | 
 |     if (lrOrder < 0) { | 
 |         if (ltOrder < 0) { | 
 |             return COMPARE_RESULT(11, trOrder); | 
 |         } | 
 |         return COMPARE_RESULT(12, ltOrder); | 
 |     } | 
 |     return COMPARE_RESULT(13, !lrOrder); | 
 | } | 
 |  | 
 | // given a line, see if the opposite curve's convex hull is all on one side | 
 | // returns -1=not on one side    0=this CW of test   1=this CCW of test | 
 | int SkOpAngle::allOnOneSide(const SkOpAngle& test) const { | 
 |     SkASSERT(!fIsCurve); | 
 |     SkASSERT(test.fIsCurve); | 
 |     const SkDPoint& origin = test.fCurvePart[0]; | 
 |     SkVector line; | 
 |     if (fSegment->verb() == SkPath::kLine_Verb) { | 
 |         const SkPoint* linePts = fSegment->pts(); | 
 |         int lineStart = fStart < fEnd ? 0 : 1; | 
 |         line = linePts[lineStart ^ 1] - linePts[lineStart]; | 
 |     } else { | 
 |         SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() }; | 
 |         line = shortPts[1] - shortPts[0]; | 
 |     } | 
 |     float crosses[3]; | 
 |     SkPath::Verb testVerb = test.fSegment->verb(); | 
 |     int iMax = SkPathOpsVerbToPoints(testVerb); | 
 | //    SkASSERT(origin == test.fCurveHalf[0]); | 
 |     const SkDCubic& testCurve = test.fCurvePart; | 
 | //    do { | 
 |         for (int index = 1; index <= iMax; ++index) { | 
 |             float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY)); | 
 |             float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX)); | 
 |             crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2; | 
 |         } | 
 |         if (crosses[0] * crosses[1] < 0) { | 
 |             return -1; | 
 |         } | 
 |         if (SkPath::kCubic_Verb == testVerb) { | 
 |             if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) { | 
 |                 return -1; | 
 |             } | 
 |         } | 
 |         if (crosses[0]) { | 
 |             return crosses[0] < 0; | 
 |         } | 
 |         if (crosses[1]) { | 
 |             return crosses[1] < 0; | 
 |         } | 
 |         if (SkPath::kCubic_Verb == testVerb && crosses[2]) { | 
 |             return crosses[2] < 0; | 
 |         } | 
 |     fUnorderable = true; | 
 |     return -1; | 
 | } | 
 |  | 
 | bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const { | 
 |     double absX = fabs(x); | 
 |     double absY = fabs(y); | 
 |     double length = absX < absY ? absX / 2 + absY : absX + absY / 2; | 
 |     int exponent; | 
 |     (void) frexp(length, &exponent); | 
 |     double epsilon = ldexp(FLT_EPSILON, exponent); | 
 |     SkPath::Verb verb = fSegment->verb(); | 
 |     SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb); | 
 |     // FIXME: the quad and cubic factors are made up ; determine actual values | 
 |     double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon; | 
 |     double xSlop = slop; | 
 |     double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ? | 
 |     double x1 = x - xSlop; | 
 |     double y1 = y + ySlop; | 
 |     double x_ry1 = x1 * ry; | 
 |     double rx_y1 = rx * y1; | 
 |     *result = x_ry1 < rx_y1; | 
 |     double x2 = x + xSlop; | 
 |     double y2 = y - ySlop; | 
 |     double x_ry2 = x2 * ry; | 
 |     double rx_y2 = rx * y2; | 
 |     bool less2 = x_ry2 < rx_y2; | 
 |     return *result == less2; | 
 | } | 
 |  | 
 | bool SkOpAngle::checkCrossesZero() const { | 
 |     int start = SkTMin(fSectorStart, fSectorEnd); | 
 |     int end = SkTMax(fSectorStart, fSectorEnd); | 
 |     bool crossesZero = end - start > 16; | 
 |     return crossesZero; | 
 | } | 
 |  | 
 | bool SkOpAngle::checkParallel(const SkOpAngle& rh) const { | 
 |     SkDVector scratch[2]; | 
 |     const SkDVector* sweep, * tweep; | 
 |     if (!fUnorderedSweep) { | 
 |         sweep = fSweep; | 
 |     } else { | 
 |         scratch[0] = fCurvePart[1] - fCurvePart[0]; | 
 |         sweep = &scratch[0]; | 
 |     } | 
 |     if (!rh.fUnorderedSweep) { | 
 |         tweep = rh.fSweep; | 
 |     } else { | 
 |         scratch[1] = rh.fCurvePart[1] - rh.fCurvePart[0]; | 
 |         tweep = &scratch[1]; | 
 |     } | 
 |     double s0xt0 = sweep->crossCheck(*tweep); | 
 |     if (tangentsDiverge(rh, s0xt0)) { | 
 |         return s0xt0 < 0; | 
 |     } | 
 |     SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0]; | 
 |     SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0]; | 
 |     double m0xm1 = m0.crossCheck(m1); | 
 |     if (m0xm1 == 0) { | 
 |         fUnorderable = true; | 
 |         rh.fUnorderable = true; | 
 |         return true; | 
 |     } | 
 |     return m0xm1 < 0; | 
 | } | 
 |  | 
 | // the original angle is too short to get meaningful sector information | 
 | // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it | 
 | // would cause it to intersect one of the adjacent angles | 
 | bool SkOpAngle::computeSector() { | 
 |     if (fComputedSector) { | 
 |         // FIXME: logically, this should return !fUnorderable, but doing so breaks testQuadratic51 | 
 |         // -- but in general, this code may not work so this may be the least of problems | 
 |         // adding the bang fixes testQuads46x in release, however | 
 |         return !fUnorderable; | 
 |     } | 
 |     SkASSERT(fSegment->verb() != SkPath::kLine_Verb && small()); | 
 |     fComputedSector = true; | 
 |     int step = fStart < fEnd ? 1 : -1; | 
 |     int limit = step > 0 ? fSegment->count() : -1; | 
 |     int checkEnd = fEnd; | 
 |     do { | 
 | // advance end | 
 |         const SkOpSpan& span = fSegment->span(checkEnd); | 
 |         const SkOpSegment* other = span.fOther; | 
 |         int oCount = other->count(); | 
 |         for (int oIndex = 0; oIndex < oCount; ++oIndex) { | 
 |             const SkOpSpan& oSpan = other->span(oIndex); | 
 |             if (oSpan.fOther != fSegment) { | 
 |                 continue; | 
 |             } | 
 |             if (oSpan.fOtherIndex == checkEnd) { | 
 |                 continue; | 
 |             } | 
 |             if (!approximately_equal(oSpan.fOtherT, span.fT)) { | 
 |                 continue; | 
 |             } | 
 |             goto recomputeSector; | 
 |         } | 
 |         checkEnd += step; | 
 |     } while (checkEnd != limit); | 
 | recomputeSector: | 
 |     if (checkEnd == fEnd || checkEnd - step == fEnd) { | 
 |         fUnorderable = true; | 
 |         return false; | 
 |     } | 
 |     int saveEnd = fEnd; | 
 |     fComputedEnd = fEnd = checkEnd - step; | 
 |     setSpans(); | 
 |     setSector(); | 
 |     fEnd = saveEnd; | 
 |     return !fUnorderable; | 
 | } | 
 |  | 
 | // returns -1 if overlaps   0 if no overlap cw    1 if no overlap ccw | 
 | int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const { | 
 |     const SkDVector* sweep = fSweep; | 
 |     const SkDVector* tweep = rh.fSweep; | 
 |     double s0xs1 = sweep[0].crossCheck(sweep[1]); | 
 |     double s0xt0 = sweep[0].crossCheck(tweep[0]); | 
 |     double s1xt0 = sweep[1].crossCheck(tweep[0]); | 
 |     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0; | 
 |     double s0xt1 = sweep[0].crossCheck(tweep[1]); | 
 |     double s1xt1 = sweep[1].crossCheck(tweep[1]); | 
 |     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0; | 
 |     double t0xt1 = tweep[0].crossCheck(tweep[1]); | 
 |     if (tBetweenS) { | 
 |         return -1; | 
 |     } | 
 |     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1 | 
 |         return -1; | 
 |     } | 
 |     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0; | 
 |     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0; | 
 |     if (sBetweenT) { | 
 |         return -1; | 
 |     } | 
 |     // if all of the sweeps are in the same half plane, then the order of any pair is enough | 
 |     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) { | 
 |         return 0; | 
 |     } | 
 |     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) { | 
 |         return 1; | 
 |     } | 
 |     // if the outside sweeps are greater than 180 degress: | 
 |         // first assume the inital tangents are the ordering | 
 |         // if the midpoint direction matches the inital order, that is enough | 
 |     SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0]; | 
 |     SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0]; | 
 |     double m0xm1 = m0.crossCheck(m1); | 
 |     if (s0xt0 > 0 && m0xm1 > 0) { | 
 |         return 0; | 
 |     } | 
 |     if (s0xt0 < 0 && m0xm1 < 0) { | 
 |         return 1; | 
 |     } | 
 |     if (tangentsDiverge(rh, s0xt0)) { | 
 |         return s0xt0 < 0; | 
 |     } | 
 |     return m0xm1 < 0; | 
 | } | 
 |  | 
 | // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup | 
 | double SkOpAngle::distEndRatio(double dist) const { | 
 |     double longest = 0; | 
 |     const SkOpSegment& segment = *this->segment(); | 
 |     int ptCount = SkPathOpsVerbToPoints(segment.verb()); | 
 |     const SkPoint* pts = segment.pts(); | 
 |     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) { | 
 |         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) { | 
 |             if (idx1 == idx2) { | 
 |                 continue; | 
 |             } | 
 |             SkDVector v; | 
 |             v.set(pts[idx2] - pts[idx1]); | 
 |             double lenSq = v.lengthSquared(); | 
 |             longest = SkTMax(longest, lenSq); | 
 |         } | 
 |     } | 
 |     return sqrt(longest) / dist; | 
 | } | 
 |  | 
 | bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const { | 
 |     SkPath::Verb lVerb = fSegment->verb(); | 
 |     SkPath::Verb rVerb = rh.fSegment->verb(); | 
 |     int lPts = SkPathOpsVerbToPoints(lVerb); | 
 |     int rPts = SkPathOpsVerbToPoints(rVerb); | 
 |     SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}}, | 
 |             {{fCurvePart[0], fCurvePart[lPts]}}}; | 
 |     if (rays[0][1] == rays[1][1]) { | 
 |         return checkParallel(rh); | 
 |     } | 
 |     double smallTs[2] = {-1, -1}; | 
 |     bool limited[2] = {false, false}; | 
 |     for (int index = 0; index < 2; ++index) { | 
 |         const SkOpSegment& segment = index ? *rh.fSegment : *fSegment; | 
 |         SkIntersections i; | 
 |         (*CurveIntersectRay[index ? rPts : lPts])(segment.pts(), rays[index], &i); | 
 | //      SkASSERT(i.used() >= 1); | 
 | //        if (i.used() <= 1) { | 
 | //            continue; | 
 | //        } | 
 |         double tStart = segment.t(index ? rh.fStart : fStart); | 
 |         double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd); | 
 |         bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd; | 
 |         double t = testAscends ? 0 : 1; | 
 |         for (int idx2 = 0; idx2 < i.used(); ++idx2) { | 
 |             double testT = i[0][idx2]; | 
 |             if (!approximately_between_orderable(tStart, testT, tEnd)) { | 
 |                 continue; | 
 |             } | 
 |             if (approximately_equal_orderable(tStart, testT)) { | 
 |                 continue; | 
 |             } | 
 |             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT); | 
 |             limited[index] = approximately_equal_orderable(t, tEnd); | 
 |         } | 
 |     } | 
 | #if 0 | 
 |     if (smallTs[0] < 0 && smallTs[1] < 0) {  // if neither ray intersects, do endpoint sort | 
 |         double m0xm1 = 0; | 
 |         if (lVerb == SkPath::kLine_Verb) { | 
 |             SkASSERT(rVerb != SkPath::kLine_Verb); | 
 |             SkDVector m0 = rays[1][1] - fCurvePart[0]; | 
 |             SkDPoint endPt; | 
 |             endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]); | 
 |             SkDVector m1 = endPt - fCurvePart[0]; | 
 |             m0xm1 = m0.crossCheck(m1); | 
 |         } | 
 |         if (rVerb == SkPath::kLine_Verb) { | 
 |             SkDPoint endPt; | 
 |             endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]); | 
 |             SkDVector m0 = endPt - fCurvePart[0]; | 
 |             SkDVector m1 = rays[0][1] - fCurvePart[0]; | 
 |             m0xm1 = m0.crossCheck(m1); | 
 |         } | 
 |         if (m0xm1 != 0) { | 
 |             return m0xm1 < 0; | 
 |         } | 
 |     } | 
 | #endif | 
 |     bool sRayLonger = false; | 
 |     SkDVector sCept = {0, 0}; | 
 |     double sCeptT = -1; | 
 |     int sIndex = -1; | 
 |     bool useIntersect = false; | 
 |     for (int index = 0; index < 2; ++index) { | 
 |         if (smallTs[index] < 0) { | 
 |             continue; | 
 |         } | 
 |         const SkOpSegment& segment = index ? *rh.fSegment : *fSegment; | 
 |         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]); | 
 |         SkDVector cept = dPt - rays[index][0]; | 
 |         // If this point is on the curve, it should have been detected earlier by ordinary | 
 |         // curve intersection. This may be hard to determine in general, but for lines, | 
 |         // the point could be close to or equal to its end, but shouldn't be near the start. | 
 |         if ((index ? lPts : rPts) == 1) { | 
 |             SkDVector total = rays[index][1] - rays[index][0]; | 
 |             if (cept.lengthSquared() * 2 < total.lengthSquared()) { | 
 |                 continue; | 
 |             } | 
 |         } | 
 |         SkDVector end = rays[index][1] - rays[index][0]; | 
 |         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) { | 
 |             continue; | 
 |         } | 
 |         double rayDist = cept.length(); | 
 |         double endDist = end.length(); | 
 |         bool rayLonger = rayDist > endDist; | 
 |         if (limited[0] && limited[1] && rayLonger) { | 
 |             useIntersect = true; | 
 |             sRayLonger = rayLonger; | 
 |             sCept = cept; | 
 |             sCeptT = smallTs[index]; | 
 |             sIndex = index; | 
 |             break; | 
 |         } | 
 |         double delta = fabs(rayDist - endDist); | 
 |         double minX, minY, maxX, maxY; | 
 |         minX = minY = SK_ScalarInfinity; | 
 |         maxX = maxY = -SK_ScalarInfinity; | 
 |         const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart; | 
 |         int ptCount = index ? rPts : lPts; | 
 |         for (int idx2 = 0; idx2 <= ptCount; ++idx2) { | 
 |             minX = SkTMin(minX, curve[idx2].fX); | 
 |             minY = SkTMin(minY, curve[idx2].fY); | 
 |             maxX = SkTMax(maxX, curve[idx2].fX); | 
 |             maxY = SkTMax(maxY, curve[idx2].fY); | 
 |         } | 
 |         double maxWidth = SkTMax(maxX - minX, maxY - minY); | 
 |         delta /= maxWidth; | 
 |         if (delta > 1e-4 && (useIntersect ^= true)) {  // FIXME: move this magic number | 
 |             sRayLonger = rayLonger; | 
 |             sCept = cept; | 
 |             sCeptT = smallTs[index]; | 
 |             sIndex = index; | 
 |         } | 
 |     } | 
 |     if (useIntersect) { | 
 |         const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart; | 
 |         const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment; | 
 |         double tStart = segment.t(sIndex ? rh.fStart : fStart); | 
 |         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0]; | 
 |         double septDir = mid.crossCheck(sCept); | 
 |         if (!septDir) { | 
 |             return checkParallel(rh); | 
 |         } | 
 |         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0); | 
 |     } else { | 
 |         return checkParallel(rh); | 
 |     } | 
 | } | 
 |  | 
 | // Most of the time, the first one can be found trivially by detecting the smallest sector value. | 
 | // If all angles have the same sector value, actual sorting is required. | 
 | const SkOpAngle* SkOpAngle::findFirst() const { | 
 |     const SkOpAngle* best = this; | 
 |     int bestStart = SkTMin(fSectorStart, fSectorEnd); | 
 |     const SkOpAngle* angle = this; | 
 |     while ((angle = angle->fNext) != this) { | 
 |         int angleEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); | 
 |         if (angleEnd < bestStart) { | 
 |             return angle;    // we wrapped around | 
 |         } | 
 |         int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd); | 
 |         if (bestStart > angleStart) { | 
 |             best = angle; | 
 |             bestStart = angleStart; | 
 |         } | 
 |     } | 
 |     // back up to the first possible angle | 
 |     const SkOpAngle* firstBest = best; | 
 |     angle = best; | 
 |     int bestEnd = SkTMax(best->fSectorStart, best->fSectorEnd); | 
 |     while ((angle = angle->previous()) != firstBest) { | 
 |         if (angle->fStop) { | 
 |             break; | 
 |         } | 
 |         int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd); | 
 |         // angles that are smaller by one aren't necessary better, since the larger may be a line | 
 |         // and the smaller may be a curve that curls to the other side of the line. | 
 |         if (bestEnd + 1 < angleStart) { | 
 |             return best; | 
 |         } | 
 |         best = angle; | 
 |         bestEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); | 
 |     } | 
 |     // in the case where all angles are nearly in the same sector, check the order to find the best | 
 |     firstBest = best; | 
 |     angle = best; | 
 |     do { | 
 |         angle = angle->fNext; | 
 |         if (angle->fStop) { | 
 |             return firstBest; | 
 |         } | 
 |         bool orderable = best->orderable(*angle);  // note: may return an unorderable angle | 
 |         if (orderable == 0) { | 
 |             return angle; | 
 |         } | 
 |         best = angle; | 
 |     } while (angle != firstBest); | 
 |     // if the angles are equally ordered, fall back on the initial tangent | 
 |     bool foundBelow = false; | 
 |     while ((angle = angle->fNext)) { | 
 |         SkDVector scratch[2]; | 
 |         const SkDVector* sweep; | 
 |         if (!angle->fUnorderedSweep) { | 
 |             sweep = angle->fSweep; | 
 |         } else { | 
 |             scratch[0] = angle->fCurvePart[1] - angle->fCurvePart[0]; | 
 |             sweep = &scratch[0]; | 
 |         } | 
 |         bool isAbove = sweep->fY <= 0; | 
 |         if (isAbove && foundBelow) { | 
 |             return angle; | 
 |         } | 
 |         foundBelow |= !isAbove; | 
 |         if (angle == firstBest) { | 
 |             return NULL; // should not loop around | 
 |         } | 
 |     } | 
 |     SkASSERT(0);  // should never get here | 
 |     return NULL; | 
 | } | 
 |  | 
 | /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0 | 
 |     0    x                      x               x | 
 |     1    x                      x          x | 
 |     2    x                      x    x | 
 |     3    x                  x        x | 
 |     4    x             x             x | 
 |     5    x             x                   x | 
 |     6    x             x                        x | 
 |     7         x        x                        x | 
 |     8             x    x                        x | 
 |     9             x    x                   x | 
 |     10            x    x             x | 
 |     11            x         x        x | 
 |     12            x             x    x | 
 |     13            x             x          x | 
 |     14            x             x               x | 
 |     15        x                 x               x | 
 | */ | 
 | int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const { | 
 |     double absX = fabs(x); | 
 |     double absY = fabs(y); | 
 |     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0; | 
 |     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim, | 
 |     // one could coin the term sedecimant for a space divided into 16 sections. | 
 |    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts | 
 |     static const int sedecimant[3][3][3] = { | 
 |     //       y<0           y==0           y>0 | 
 |     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0 | 
 |         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y) | 
 |         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y) | 
 |         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y) | 
 |     }; | 
 |     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1; | 
 |     SkASSERT(SkPath::kLine_Verb == verb || sector >= 0); | 
 |     return sector; | 
 | } | 
 |  | 
 | // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side | 
 | // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side | 
 | void SkOpAngle::insert(SkOpAngle* angle) { | 
 |     if (angle->fNext) { | 
 |         if (loopCount() >= angle->loopCount()) { | 
 |             if (!merge(angle)) { | 
 |                 return; | 
 |             } | 
 |         } else if (fNext) { | 
 |             if (!angle->merge(this)) { | 
 |                 return; | 
 |             } | 
 |         } else { | 
 |             angle->insert(this); | 
 |         } | 
 |         return; | 
 |     } | 
 |     bool singleton = NULL == fNext; | 
 |     if (singleton) { | 
 |         fNext = this; | 
 |     } | 
 |     SkOpAngle* next = fNext; | 
 |     if (next->fNext == this) { | 
 |         if (angle->overlap(*this)) { | 
 |             return; | 
 |         } | 
 |         if (singleton || angle->after(this)) { | 
 |             this->fNext = angle; | 
 |             angle->fNext = next; | 
 |         } else { | 
 |             next->fNext = angle; | 
 |             angle->fNext = this; | 
 |         } | 
 |         debugValidateNext(); | 
 |         return; | 
 |     } | 
 |     SkOpAngle* last = this; | 
 |     do { | 
 |         SkASSERT(last->fNext == next); | 
 |         if (angle->overlap(*last) || angle->overlap(*next)) { | 
 |             return; | 
 |         } | 
 |         if (angle->after(last)) { | 
 |             last->fNext = angle; | 
 |             angle->fNext = next; | 
 |             debugValidateNext(); | 
 |             return; | 
 |         } | 
 |         last = next; | 
 |         next = next->fNext; | 
 |         if (last == this && next->fUnorderable) { | 
 |             fUnorderable = true; | 
 |             return; | 
 |         } | 
 |         SkASSERT(last != this); | 
 |     } while (true); | 
 | } | 
 |  | 
 | bool SkOpAngle::isHorizontal() const { | 
 |     return !fIsCurve && fSweep[0].fY == 0; | 
 | } | 
 |  | 
 | SkOpSpan* SkOpAngle::lastMarked() const { | 
 |     if (fLastMarked) { | 
 |         if (fLastMarked->fChased) { | 
 |             return NULL; | 
 |         } | 
 |         fLastMarked->fChased = true; | 
 |     } | 
 |     return fLastMarked; | 
 | } | 
 |  | 
 | bool SkOpAngle::loopContains(const SkOpAngle& test) const { | 
 |     if (!fNext) { | 
 |         return false; | 
 |     } | 
 |     const SkOpAngle* first = this; | 
 |     const SkOpAngle* loop = this; | 
 |     const SkOpSegment* tSegment = test.fSegment; | 
 |     double tStart = tSegment->span(test.fStart).fT; | 
 |     double tEnd = tSegment->span(test.fEnd).fT; | 
 |     do { | 
 |         const SkOpSegment* lSegment = loop->fSegment; | 
 |         // FIXME : use precisely_equal ? or compare points exactly ? | 
 |         if (lSegment != tSegment) { | 
 |             continue; | 
 |         } | 
 |         double lStart = lSegment->span(loop->fStart).fT; | 
 |         if (lStart != tEnd) { | 
 |             continue; | 
 |         } | 
 |         double lEnd = lSegment->span(loop->fEnd).fT; | 
 |         if (lEnd == tStart) { | 
 |             return true; | 
 |         } | 
 |     } while ((loop = loop->fNext) != first); | 
 |     return false; | 
 | } | 
 |  | 
 | int SkOpAngle::loopCount() const { | 
 |     int count = 0; | 
 |     const SkOpAngle* first = this; | 
 |     const SkOpAngle* next = this; | 
 |     do { | 
 |         next = next->fNext; | 
 |         ++count; | 
 |     } while (next && next != first); | 
 |     return count; | 
 | } | 
 |  | 
 | // OPTIMIZATION: can this be done better in after when angles are sorted? | 
 | void SkOpAngle::markStops() { | 
 |     SkOpAngle* angle = this; | 
 |     int lastEnd = SkTMax(fSectorStart, fSectorEnd); | 
 |     do { | 
 |         angle = angle->fNext; | 
 |         int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd); | 
 |         // angles that are smaller by one aren't necessary better, since the larger may be a line | 
 |         // and the smaller may be a curve that curls to the other side of the line. | 
 |         if (lastEnd + 1 < angleStart) { | 
 |             angle->fStop = true; | 
 |         } | 
 |         lastEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd); | 
 |     } while (angle != this); | 
 | } | 
 |  | 
 | bool SkOpAngle::merge(SkOpAngle* angle) { | 
 |     SkASSERT(fNext); | 
 |     SkASSERT(angle->fNext); | 
 |     SkOpAngle* working = angle; | 
 |     do { | 
 |         if (this == working) { | 
 |             return false; | 
 |         } | 
 |         working = working->fNext; | 
 |     } while (working != angle); | 
 |     do { | 
 |         SkOpAngle* next = working->fNext; | 
 |         working->fNext = NULL; | 
 |         insert(working); | 
 |         working = next; | 
 |     } while (working != angle); | 
 |     // it's likely that a pair of the angles are unorderable | 
 | #if DEBUG_ANGLE | 
 |     SkOpAngle* last = angle; | 
 |     working = angle->fNext; | 
 |     do { | 
 |         SkASSERT(last->fNext == working); | 
 |         last->fNext = working->fNext; | 
 |         SkASSERT(working->after(last)); | 
 |         last->fNext = working; | 
 |         last = working; | 
 |         working = working->fNext; | 
 |     } while (last != angle); | 
 | #endif | 
 |     debugValidateNext(); | 
 |     return true; | 
 | } | 
 |  | 
 | double SkOpAngle::midT() const { | 
 |     return (fSegment->t(fStart) + fSegment->t(fEnd)) / 2; | 
 | } | 
 |  | 
 | bool SkOpAngle::oppositePlanes(const SkOpAngle& rh) const { | 
 |     int startSpan = abs(rh.fSectorStart - fSectorStart); | 
 |     return startSpan >= 8; | 
 | } | 
 |  | 
 | bool SkOpAngle::orderable(const SkOpAngle& rh) const { | 
 |     int result; | 
 |     if (!fIsCurve) { | 
 |         if (!rh.fIsCurve) { | 
 |             double leftX = fTangentHalf.dx(); | 
 |             double leftY = fTangentHalf.dy(); | 
 |             double rightX = rh.fTangentHalf.dx(); | 
 |             double rightY = rh.fTangentHalf.dy(); | 
 |             double x_ry = leftX * rightY; | 
 |             double rx_y = rightX * leftY; | 
 |             if (x_ry == rx_y) { | 
 |                 if (leftX * rightX < 0 || leftY * rightY < 0) { | 
 |                     return true;  // exactly 180 degrees apart | 
 |                 } | 
 |                 goto unorderable; | 
 |             } | 
 |             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier | 
 |             return x_ry < rx_y; | 
 |         } | 
 |         if ((result = allOnOneSide(rh)) >= 0) { | 
 |             return result; | 
 |         } | 
 |         if (fUnorderable || approximately_zero(rh.fSide)) { | 
 |             goto unorderable; | 
 |         } | 
 |     } else if (!rh.fIsCurve) { | 
 |         if ((result = rh.allOnOneSide(*this)) >= 0) { | 
 |             return !result; | 
 |         } | 
 |         if (rh.fUnorderable || approximately_zero(fSide)) { | 
 |             goto unorderable; | 
 |         } | 
 |     } | 
 |     if ((result = convexHullOverlaps(rh)) >= 0) { | 
 |         return result; | 
 |     } | 
 |     return endsIntersect(rh); | 
 | unorderable: | 
 |     fUnorderable = true; | 
 |     rh.fUnorderable = true; | 
 |     return true; | 
 | } | 
 |  | 
 | bool SkOpAngle::overlap(const SkOpAngle& other) const { | 
 |     int min = SkTMin(fStart, fEnd); | 
 |     const SkOpSpan& span = fSegment->span(min); | 
 |     const SkOpSegment* oSeg = other.fSegment; | 
 |     int oMin = SkTMin(other.fStart, other.fEnd); | 
 |     const SkOpSpan& oSpan = oSeg->span(oMin); | 
 |     if (!span.fSmall && !oSpan.fSmall) { | 
 |         return false; | 
 |     } | 
 |     if (fSegment->span(fStart).fPt != oSeg->span(other.fStart).fPt) { | 
 |         return false; | 
 |     } | 
 |     // see if small span is contained by opposite span | 
 |     return span.fSmall ? oSeg->containsPt(fSegment->span(fEnd).fPt, other.fEnd, other.fStart) | 
 |             : fSegment->containsPt(oSeg->span(other.fEnd).fPt, fEnd, fStart); | 
 | } | 
 |  | 
 | // OPTIMIZE: if this shows up in a profile, add a previous pointer | 
 | // as is, this should be rarely called | 
 | SkOpAngle* SkOpAngle::previous() const { | 
 |     SkOpAngle* last = fNext; | 
 |     do { | 
 |         SkOpAngle* next = last->fNext; | 
 |         if (next == this) { | 
 |             return last; | 
 |         } | 
 |         last = next; | 
 |     } while (true); | 
 | } | 
 |  | 
 | void SkOpAngle::set(const SkOpSegment* segment, int start, int end) { | 
 |     fSegment = segment; | 
 |     fStart = start; | 
 |     fComputedEnd = fEnd = end; | 
 |     fNext = NULL; | 
 |     fComputeSector = fComputedSector = false; | 
 |     fStop = false; | 
 |     setSpans(); | 
 |     setSector(); | 
 | } | 
 |  | 
 | void SkOpAngle::setCurveHullSweep() { | 
 |     fUnorderedSweep = false; | 
 |     fSweep[0] = fCurvePart[1] - fCurvePart[0]; | 
 |     if (SkPath::kLine_Verb == fSegment->verb()) { | 
 |         fSweep[1] = fSweep[0]; | 
 |         return; | 
 |     } | 
 |     fSweep[1] = fCurvePart[2] - fCurvePart[0]; | 
 |     if (SkPath::kCubic_Verb != fSegment->verb()) { | 
 |         if (!fSweep[0].fX && !fSweep[0].fY) { | 
 |             fSweep[0] = fSweep[1]; | 
 |         } | 
 |         return; | 
 |     } | 
 |     SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0]; | 
 |     if (fSweep[0].fX == 0 && fSweep[0].fY == 0) { | 
 |         fSweep[0] = fSweep[1]; | 
 |         fSweep[1] = thirdSweep; | 
 |         if (fSweep[0].fX == 0 && fSweep[0].fY == 0) { | 
 |             fSweep[0] = fSweep[1]; | 
 |             fCurvePart[1] = fCurvePart[3]; | 
 |             fIsCurve = false; | 
 |         } | 
 |         return; | 
 |     } | 
 |     double s1x3 = fSweep[0].crossCheck(thirdSweep); | 
 |     double s3x2 = thirdSweep.crossCheck(fSweep[1]); | 
 |     if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors | 
 |         return; | 
 |     } | 
 |     double s2x1 = fSweep[1].crossCheck(fSweep[0]); | 
 |     // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble | 
 |     // probably such wide sweeps should be artificially subdivided earlier so that never happens | 
 |     SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0); | 
 |     if (s3x2 * s2x1 < 0) { | 
 |         SkASSERT(s2x1 * s1x3 > 0); | 
 |         fSweep[0] = fSweep[1]; | 
 |         fUnorderedSweep = true; | 
 |     } | 
 |     fSweep[1] = thirdSweep; | 
 | } | 
 |  | 
 | void SkOpAngle::setSector() { | 
 |     SkPath::Verb verb = fSegment->verb(); | 
 |     if (SkPath::kLine_Verb != verb && small()) { | 
 |         fSectorStart = fSectorEnd = -1; | 
 |         fSectorMask = 0; | 
 |         fComputeSector = true;  // can't determine sector until segment length can be found | 
 |         return; | 
 |     } | 
 |     fSectorStart = findSector(verb, fSweep[0].fX, fSweep[0].fY); | 
 |     if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same | 
 |         SkASSERT(fSectorStart >= 0); | 
 |         fSectorEnd = fSectorStart; | 
 |         fSectorMask = 1 << fSectorStart; | 
 |         return; | 
 |     } | 
 |     SkASSERT(SkPath::kLine_Verb != verb); | 
 |     fSectorEnd = findSector(verb, fSweep[1].fX, fSweep[1].fY); | 
 |     if (fSectorEnd == fSectorStart) { | 
 |         SkASSERT((fSectorStart & 3) != 3);  // if the sector has no span, it can't be an exact angle | 
 |         fSectorMask = 1 << fSectorStart; | 
 |         return; | 
 |     } | 
 |     bool crossesZero = checkCrossesZero(); | 
 |     int start = SkTMin(fSectorStart, fSectorEnd); | 
 |     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero; | 
 |     // bump the start and end of the sector span if they are on exact compass points | 
 |     if ((fSectorStart & 3) == 3) { | 
 |         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f; | 
 |     } | 
 |     if ((fSectorEnd & 3) == 3) { | 
 |         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f; | 
 |     } | 
 |     crossesZero = checkCrossesZero(); | 
 |     start = SkTMin(fSectorStart, fSectorEnd); | 
 |     int end = SkTMax(fSectorStart, fSectorEnd); | 
 |     if (!crossesZero) { | 
 |         fSectorMask = (unsigned) -1 >> (31 - end + start) << start; | 
 |     } else { | 
 |         fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end); | 
 |     } | 
 | } | 
 |  | 
 | void SkOpAngle::setSpans() { | 
 |     fUnorderable = fSegment->isTiny(this); | 
 |     fLastMarked = NULL; | 
 |     const SkPoint* pts = fSegment->pts(); | 
 |     SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY | 
 |             = SK_ScalarNaN); | 
 |     fSegment->subDivide(fStart, fEnd, &fCurvePart); | 
 |     setCurveHullSweep(); | 
 |     const SkPath::Verb verb = fSegment->verb(); | 
 |     if (verb != SkPath::kLine_Verb | 
 |             && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) { | 
 |         SkDLine lineHalf; | 
 |         lineHalf[0].set(fCurvePart[0].asSkPoint()); | 
 |         lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint()); | 
 |         fTangentHalf.lineEndPoints(lineHalf); | 
 |         fSide = 0; | 
 |     } | 
 |     switch (verb) { | 
 |     case SkPath::kLine_Verb: { | 
 |         SkASSERT(fStart != fEnd); | 
 |         const SkPoint& cP1 = pts[fStart < fEnd]; | 
 |         SkDLine lineHalf; | 
 |         lineHalf[0].set(fSegment->span(fStart).fPt); | 
 |         lineHalf[1].set(cP1); | 
 |         fTangentHalf.lineEndPoints(lineHalf); | 
 |         fSide = 0; | 
 |         fIsCurve = false; | 
 |         } return; | 
 |     case SkPath::kQuad_Verb: { | 
 |         SkLineParameters tangentPart; | 
 |         SkDQuad& quad2 = *SkTCast<SkDQuad*>(&fCurvePart); | 
 |         (void) tangentPart.quadEndPoints(quad2); | 
 |         fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only | 
 |         } break; | 
 |     case SkPath::kCubic_Verb: { | 
 |         SkLineParameters tangentPart; | 
 |         (void) tangentPart.cubicPart(fCurvePart); | 
 |         fSide = -tangentPart.pointDistance(fCurvePart[3]); | 
 |         double testTs[4]; | 
 |         // OPTIMIZATION: keep inflections precomputed with cubic segment? | 
 |         int testCount = SkDCubic::FindInflections(pts, testTs); | 
 |         double startT = fSegment->t(fStart); | 
 |         double endT = fSegment->t(fEnd); | 
 |         double limitT = endT; | 
 |         int index; | 
 |         for (index = 0; index < testCount; ++index) { | 
 |             if (!::between(startT, testTs[index], limitT)) { | 
 |                 testTs[index] = -1; | 
 |             } | 
 |         } | 
 |         testTs[testCount++] = startT; | 
 |         testTs[testCount++] = endT; | 
 |         SkTQSort<double>(testTs, &testTs[testCount - 1]); | 
 |         double bestSide = 0; | 
 |         int testCases = (testCount << 1) - 1; | 
 |         index = 0; | 
 |         while (testTs[index] < 0) { | 
 |             ++index; | 
 |         } | 
 |         index <<= 1; | 
 |         for (; index < testCases; ++index) { | 
 |             int testIndex = index >> 1; | 
 |             double testT = testTs[testIndex]; | 
 |             if (index & 1) { | 
 |                 testT = (testT + testTs[testIndex + 1]) / 2; | 
 |             } | 
 |             // OPTIMIZE: could avoid call for t == startT, endT | 
 |             SkDPoint pt = dcubic_xy_at_t(pts, testT); | 
 |             SkLineParameters tangentPart; | 
 |             tangentPart.cubicEndPoints(fCurvePart); | 
 |             double testSide = tangentPart.pointDistance(pt); | 
 |             if (fabs(bestSide) < fabs(testSide)) { | 
 |                 bestSide = testSide; | 
 |             } | 
 |         } | 
 |         fSide = -bestSide;  // compare sign only | 
 |         } break; | 
 |     default: | 
 |         SkASSERT(0); | 
 |     } | 
 | } | 
 |  | 
 | bool SkOpAngle::small() const { | 
 |     int min = SkMin32(fStart, fEnd); | 
 |     int max = SkMax32(fStart, fEnd); | 
 |     for (int index = min; index < max; ++index) { | 
 |         const SkOpSpan& mSpan = fSegment->span(index); | 
 |         if (!mSpan.fSmall) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const { | 
 |     if (s0xt0 == 0) { | 
 |         return false; | 
 |     } | 
 |     // if the ctrl tangents are not nearly parallel, use them | 
 |     // solve for opposite direction displacement scale factor == m | 
 |     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x | 
 |     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1] | 
 |     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x) | 
 |     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x) | 
 |     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x | 
 |     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) | 
 |     // m = v1.cross(v2) / v1.dot(v2) | 
 |     const SkDVector* sweep = fSweep; | 
 |     const SkDVector* tweep = rh.fSweep; | 
 |     double s0dt0 = sweep[0].dot(tweep[0]); | 
 |     if (!s0dt0) { | 
 |         return true; | 
 |     } | 
 |     SkASSERT(s0dt0 != 0); | 
 |     double m = s0xt0 / s0dt0; | 
 |     double sDist = sweep[0].length() * m; | 
 |     double tDist = tweep[0].length() * m; | 
 |     bool useS = fabs(sDist) < fabs(tDist); | 
 |     double mFactor = fabs(useS ? distEndRatio(sDist) : rh.distEndRatio(tDist)); | 
 |     return mFactor < 5000;  // empirically found limit | 
 | } | 
 |  | 
 | SkOpAngleSet::SkOpAngleSet()  | 
 |     : fAngles(NULL) | 
 | #if DEBUG_ANGLE | 
 |     , fCount(0) | 
 | #endif | 
 | { | 
 | } | 
 |  | 
 | SkOpAngleSet::~SkOpAngleSet() { | 
 |     SkDELETE(fAngles); | 
 | } | 
 |  | 
 | SkOpAngle& SkOpAngleSet::push_back() { | 
 |     if (!fAngles) { | 
 |         fAngles = SkNEW_ARGS(SkChunkAlloc, (2)); | 
 |     } | 
 |     void* ptr = fAngles->allocThrow(sizeof(SkOpAngle)); | 
 |     SkOpAngle* angle = (SkOpAngle*) ptr; | 
 | #if DEBUG_ANGLE | 
 |     angle->setID(++fCount); | 
 | #endif | 
 |     return *angle; | 
 | } | 
 |  | 
 | void SkOpAngleSet::reset() { | 
 |     if (fAngles) { | 
 |         fAngles->reset(); | 
 |     } | 
 | } |