blob: 59c0e891af9e97f06e0f50fc2255e6d1e9c5128c [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPicture.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkTypes.h"
#include "include/effects/SkImageFilters.h"
#include "include/effects/SkTableColorFilter.h"
#include "include/gpu/GrDirectContext.h"
constexpr int kTestRectSize = 50;
constexpr int kDetectorGreenValue = 50;
// Below are few functions to install "detector" color filters. The filter is there to assert that
// the color value it sees is the expected. It will trigger only with kDetectorGreenValue, and
// turn that value into full green. The idea is that if an optimization incorrectly changes
// kDetectorGreenValue and then the incorrect value is observable by some part of the drawing
// pipeline, that pixel will remain empty.
static sk_sp<SkColorFilter> make_detector_color_filter() {
uint8_t tableA[256] = { 0, };
uint8_t tableR[256] = { 0, };
uint8_t tableG[256] = { 0, };
uint8_t tableB[256] = { 0, };
tableA[255] = 255;
tableG[kDetectorGreenValue] = 255;
return SkTableColorFilter::MakeARGB(tableA, tableR, tableG, tableB);
}
// This detector detects that color filter phase of the pixel pipeline receives the correct value.
static void install_detector_color_filter(SkPaint* drawPaint) {
drawPaint->setColorFilter(make_detector_color_filter());
}
// This detector detects that image filter phase of the pixel pipeline receives the correct value.
static void install_detector_image_filter(SkPaint* drawPaint) {
drawPaint->setImageFilter(SkImageFilters::ColorFilter(
make_detector_color_filter(), drawPaint->refImageFilter()));
}
static void no_detector_install(SkPaint*) {
}
typedef void(*InstallDetectorFunc)(SkPaint*);
// Draws an pattern that can be optimized by alpha folding outer savelayer alpha value to
// inner draw. Since we know that folding will happen to the inner draw, install a detector
// to make sure that optimization does not change anything observable.
static void draw_save_layer_draw_rect_restore_sequence(SkCanvas* canvas, SkColor shapeColor,
InstallDetectorFunc installDetector) {
SkRect targetRect(SkRect::MakeWH(SkIntToScalar(kTestRectSize), SkIntToScalar(kTestRectSize)));
SkPaint layerPaint;
layerPaint.setColor(SkColorSetARGB(128, 0, 0, 0));
canvas->saveLayer(&targetRect, &layerPaint);
SkPaint drawPaint;
drawPaint.setColor(shapeColor);
installDetector(&drawPaint);
canvas->drawRect(targetRect, drawPaint);
canvas->restore();
}
// Draws an pattern that can be optimized by alpha folding outer savelayer alpha value to
// inner draw. A variant where the draw is not uniform color.
static void draw_save_layer_draw_bitmap_restore_sequence(SkCanvas* canvas, SkColor shapeColor,
InstallDetectorFunc installDetector) {
SkBitmap bitmap;
bitmap.allocN32Pixels(kTestRectSize, kTestRectSize);
bitmap.eraseColor(shapeColor);
{
// Make the bitmap non-uniform color, so that it can not be optimized as uniform drawRect.
SkCanvas bitmapCanvas(bitmap);
SkPaint p;
p.setColor(SK_ColorWHITE);
SkASSERT(shapeColor != SK_ColorWHITE);
bitmapCanvas.drawRect(SkRect::MakeWH(SkIntToScalar(7), SkIntToScalar(7)), p);
}
SkRect targetRect(SkRect::MakeWH(SkIntToScalar(kTestRectSize), SkIntToScalar(kTestRectSize)));
SkPaint layerPaint;
layerPaint.setColor(SkColorSetARGB(129, 0, 0, 0));
canvas->saveLayer(&targetRect, &layerPaint);
SkPaint drawPaint;
installDetector(&drawPaint);
canvas->drawImage(bitmap.asImage(), 0, 0, SkSamplingOptions(), &drawPaint);
canvas->restore();
}
// Draws an pattern that can be optimized by alpha folding outer savelayer alpha value to
// inner savelayer. We know that alpha folding happens to inner savelayer, so add detector there.
static void draw_svg_opacity_and_filter_layer_sequence(SkCanvas* canvas, SkColor shapeColor,
InstallDetectorFunc installDetector) {
SkRect targetRect(SkRect::MakeWH(SkIntToScalar(kTestRectSize), SkIntToScalar(kTestRectSize)));
sk_sp<SkPicture> shape;
{
SkPictureRecorder recorder;
SkCanvas* recordCanvas = recorder.beginRecording(SkIntToScalar(kTestRectSize + 2),
SkIntToScalar(kTestRectSize + 2));
SkPaint shapePaint;
shapePaint.setColor(shapeColor);
recordCanvas->drawRect(targetRect, shapePaint);
shape = recorder.finishRecordingAsPicture();
}
SkPaint layerPaint;
layerPaint.setColor(SkColorSetARGB(130, 0, 0, 0));
canvas->saveLayer(&targetRect, &layerPaint);
canvas->save();
canvas->clipRect(targetRect);
SkPaint drawPaint;
drawPaint.setImageFilter(SkImageFilters::Picture(shape));
installDetector(&drawPaint);
canvas->saveLayer(&targetRect, &drawPaint);
canvas->restore();
canvas->restore();
canvas->restore();
}
// Draws two columns of rectangles. The test is correct when:
// - Left and right columns always identical
// - First 3 rows are green, with a white dent in the middle row
// - Next 6 rows are green, with a grey dent in the middle row
// (the grey dent is from the color filter removing everything but the "good" green, see below)
// - Last 6 rows are grey
DEF_SIMPLE_GM(recordopts, canvas, (kTestRectSize+1)*2, (kTestRectSize+1)*15) {
auto direct = GrAsDirectContext(canvas->recordingContext());
canvas->clear(SK_ColorTRANSPARENT);
typedef void (*TestVariantSequence)(SkCanvas*, SkColor, InstallDetectorFunc);
TestVariantSequence funcs[] = {
draw_save_layer_draw_rect_restore_sequence,
draw_save_layer_draw_bitmap_restore_sequence,
draw_svg_opacity_and_filter_layer_sequence,
};
// Draw layer-related sequences that can be optimized by folding the opacity layer alpha to
// the inner draw operation. This tries to trigger the optimization, and relies on gm diffs
// to keep the color value correct over time.
// Draws two green rects side by side: one is without the optimization, the other is with
// the optimization applied.
SkColor shapeColor = SkColorSetARGB(255, 0, 255, 0);
for (size_t k = 0; k < std::size(funcs); ++k) {
canvas->save();
TestVariantSequence drawTestSequence = funcs[k];
drawTestSequence(canvas, shapeColor, no_detector_install);
if (direct) {
direct->flushAndSubmit();
}
canvas->translate(SkIntToScalar(kTestRectSize) + SkIntToScalar(1), SkIntToScalar(0));
{
SkPictureRecorder recorder;
drawTestSequence(recorder.beginRecording(SkIntToScalar(kTestRectSize),
SkIntToScalar(kTestRectSize)),
shapeColor, no_detector_install);
recorder.finishRecordingAsPicture()->playback(canvas);
if (direct) {
direct->flushAndSubmit();
}
}
canvas->restore();
canvas->translate(SkIntToScalar(0), SkIntToScalar(kTestRectSize) + SkIntToScalar(1));
}
// Draw the same layer related sequences, but manipulate the sequences so that the result is
// incorrect if the alpha is folded or folded incorrectly. These test the observable state
// throughout the pixel pipeline, and thus may turn off the optimizations (this is why we
// trigger the optimizations above).
// Draws two green rects side by side: one is without the optimization, the other is with
// the possibility that optimization is applied.
// At the end, draws the same patterns in translucent black. This tests that the detectors
// work, eg. that if the value the detector sees is wrong, the resulting image shows this.
SkColor shapeColors[] = {
SkColorSetARGB(255, 0, kDetectorGreenValue, 0),
SkColorSetARGB(255, 0, (kDetectorGreenValue + 1), 0) // This tests that detectors work.
};
InstallDetectorFunc detectorInstallFuncs[] = {
install_detector_image_filter,
install_detector_color_filter
};
for (size_t i = 0; i < std::size(shapeColors); ++i) {
shapeColor = shapeColors[i];
for (size_t j = 0; j < std::size(detectorInstallFuncs); ++j) {
InstallDetectorFunc detectorInstallFunc = detectorInstallFuncs[j];
for (size_t k = 0; k < std::size(funcs); ++k) {
TestVariantSequence drawTestSequence = funcs[k];
canvas->save();
drawTestSequence(canvas, shapeColor, detectorInstallFunc);
if (direct) {
direct->flushAndSubmit();
}
canvas->translate(SkIntToScalar(kTestRectSize + 1), SkIntToScalar(0));
{
SkPictureRecorder recorder;
drawTestSequence(recorder.beginRecording(SkIntToScalar(kTestRectSize),
SkIntToScalar(kTestRectSize)),
shapeColor, detectorInstallFunc);
recorder.finishRecordingAsPicture()->playback(canvas);
if (direct) {
direct->flushAndSubmit();
}
}
canvas->restore();
canvas->translate(SkIntToScalar(0), SkIntToScalar(kTestRectSize + 1));
}
}
}
}