blob: 476d52931d4055607136b48df713fc36a76058a9 [file] [log] [blame]
/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkAlphaType.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorType.h"
#include "include/core/SkFont.h"
#include "include/core/SkFontStyle.h"
#include "include/core/SkFontTypes.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSurface.h"
#include "include/core/SkSurfaceProps.h"
#include "include/core/SkTextBlob.h"
#include "include/core/SkTypeface.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GpuTypes.h"
#include "include/gpu/GrDirectContext.h"
#include "src/core/SkDevice.h"
#include "src/core/SkScalerContext.h"
#include "src/text/GlyphRun.h"
#include "src/text/gpu/SDFTControl.h"
#include "src/text/gpu/SubRunAllocator.h"
#include "src/text/gpu/TextBlob.h"
#include "tests/CtsEnforcement.h"
#include "tests/Test.h"
#include "tools/ToolUtils.h"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <tuple>
#include <utility>
class GrRecordingContext;
struct GrContextOptions;
using BagOfBytes = sktext::gpu::BagOfBytes;
using SubRunAllocator = sktext::gpu::SubRunAllocator;
SkBitmap rasterize_blob(SkTextBlob* blob,
const SkPaint& paint,
GrRecordingContext* rContext,
const SkMatrix& matrix) {
const SkImageInfo info =
SkImageInfo::Make(500, 500, kN32_SkColorType, kPremul_SkAlphaType);
auto surface = SkSurface::MakeRenderTarget(rContext, skgpu::Budgeted::kNo, info);
auto canvas = surface->getCanvas();
canvas->drawColor(SK_ColorWHITE);
canvas->concat(matrix);
canvas->drawTextBlob(blob, 10, 250, paint);
SkBitmap bitmap;
bitmap.allocN32Pixels(500, 500);
surface->readPixels(bitmap, 0, 0);
return bitmap;
}
bool check_for_black(const SkBitmap& bm) {
for (int y = 0; y < bm.height(); y++) {
for (int x = 0; x < bm.width(); x++) {
if (bm.getColor(x, y) == SK_ColorBLACK) {
return true;
}
}
}
return false;
}
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(GrTextBlobScaleAnimation,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
auto tf = ToolUtils::create_portable_typeface("Mono", SkFontStyle());
SkFont font{tf};
font.setHinting(SkFontHinting::kNormal);
font.setSize(12);
font.setEdging(SkFont::Edging::kAntiAlias);
font.setSubpixel(true);
SkTextBlobBuilder builder;
const auto& runBuffer = builder.allocRunPosH(font, 30, 0, nullptr);
for (int i = 0; i < 30; i++) {
runBuffer.glyphs[i] = static_cast<SkGlyphID>(i);
runBuffer.pos[i] = SkIntToScalar(i);
}
auto blob = builder.make();
auto dContext = ctxInfo.directContext();
bool anyBlack = false;
for (int n = -13; n < 5; n++) {
SkMatrix m = SkMatrix::Scale(std::exp2(n), std::exp2(n));
auto bm = rasterize_blob(blob.get(), SkPaint(), dContext, m);
anyBlack |= check_for_black(bm);
}
REPORTER_ASSERT(reporter, anyBlack);
}
// Test extreme positions for all combinations of positions, origins, and translation matrices.
DEF_GANESH_TEST_FOR_RENDERING_CONTEXTS(GrTextBlobMoveAround,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
auto tf = ToolUtils::create_portable_typeface("Mono", SkFontStyle());
SkFont font{tf};
font.setHinting(SkFontHinting::kNormal);
font.setSize(12);
font.setEdging(SkFont::Edging::kAntiAlias);
font.setSubpixel(true);
auto makeBlob = [&](SkPoint delta) {
SkTextBlobBuilder builder;
const auto& runBuffer = builder.allocRunPos(font, 30, nullptr);
for (int i = 0; i < 30; i++) {
runBuffer.glyphs[i] = static_cast<SkGlyphID>(i);
runBuffer.points()[i] = SkPoint::Make(SkIntToScalar(i*10) + delta.x(), 50 + delta.y());
}
return builder.make();
};
auto dContext = ctxInfo.directContext();
auto rasterizeBlob = [&](SkTextBlob* blob, SkPoint origin, const SkMatrix& matrix) {
SkPaint paint;
const SkImageInfo info =
SkImageInfo::Make(350, 80, kN32_SkColorType, kPremul_SkAlphaType);
auto surface = SkSurface::MakeRenderTarget(dContext, skgpu::Budgeted::kNo, info);
auto canvas = surface->getCanvas();
canvas->drawColor(SK_ColorWHITE);
canvas->concat(matrix);
canvas->drawTextBlob(blob, 10 + origin.x(), 40 + origin.y(), paint);
SkBitmap bitmap;
bitmap.allocN32Pixels(350, 80);
surface->readPixels(bitmap, 0, 0);
return bitmap;
};
SkBitmap benchMark;
{
auto blob = makeBlob({0, 0});
benchMark = rasterizeBlob(blob.get(), {0,0}, SkMatrix::I());
}
auto checkBitmap = [&](const SkBitmap& bitmap) {
REPORTER_ASSERT(reporter, benchMark.width() == bitmap.width());
REPORTER_ASSERT(reporter, benchMark.width() == bitmap.width());
for (int y = 0; y < benchMark.height(); y++) {
for (int x = 0; x < benchMark.width(); x++) {
if (benchMark.getColor(x, y) != bitmap.getColor(x, y)) {
return false;
}
}
}
return true;
};
SkScalar interestingNumbers[] = {-10'000'000, -1'000'000, -1, 0, +1, +1'000'000, +10'000'000};
for (auto originX : interestingNumbers) {
for (auto originY : interestingNumbers) {
for (auto translateX : interestingNumbers) {
for (auto translateY : interestingNumbers) {
// Make sure everything adds to zero.
SkScalar deltaPosX = -(originX + translateX);
SkScalar deltaPosY = -(originY + translateY);
auto blob = makeBlob({deltaPosX, deltaPosY});
SkMatrix t = SkMatrix::Translate(translateX, translateY);
auto bitmap = rasterizeBlob(blob.get(), {originX, originY}, t);
REPORTER_ASSERT(reporter, checkBitmap(bitmap));
}
}
}
}
}
DEF_TEST(BagOfBytesBasic, r) {
const int k4K = 1 << 12;
{
// GrBagOfBytes::MinimumSizeWithOverhead(-1); // This should fail
BagOfBytes::PlatformMinimumSizeWithOverhead(0, 16);
BagOfBytes::PlatformMinimumSizeWithOverhead(
std::numeric_limits<int>::max() - k4K - 1, 16);
// GrBagOfBytes::MinimumSizeWithOverhead(std::numeric_limits<int>::max() - k4K); // Fail
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(0, 1, 16, 16) == 31);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(1, 1, 16, 16) == 32);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(63, 1, 16, 16) == 94);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(0, 8, 16, 16) == 24);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(1, 8, 16, 16) == 32);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(63, 8, 16, 16) == 88);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(0, 16, 16, 16) == 16);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(1, 16, 16, 16) == 32);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(63, 16, 16, 16) == 80);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(0, 1, 8, 16) == 23);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(1, 1, 8, 16) == 24);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(63, 1, 8, 16) == 86);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(0, 8, 8, 16) == 16);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(1, 8, 8, 16) == 24);
REPORTER_ASSERT(r, BagOfBytes::MinimumSizeWithOverhead(63, 8, 8, 16) == 80);
}
{
BagOfBytes bob;
// bob.alignedBytes(0, 1); // This should fail
// bob.alignedBytes(1, 0); // This should fail
// bob.alignedBytes(1, 3); // This should fail
struct Big {
char stuff[std::numeric_limits<int>::max()];
};
// bob.alignedBytes(sizeof(Big), 1); // this should fail
// bob.allocateBytesFor<Big>(); // this should not compile
// The following should run, but should not be regularly tested.
// bob.allocateBytesFor<int>((std::numeric_limits<int>::max() - (1<<12)) / sizeof(int) - 1);
// The following should fail
// bob.allocateBytesFor<int>((std::numeric_limits<int>::max() - (1<<12)) / sizeof(int));
bob.alignedBytes(1, 1); // To avoid unused variable problems.
}
// Force multiple block allocation
{
BagOfBytes bob;
const int k64K = 1 << 16;
// By default allocation block sizes start at 1K and go up with fib. This should allocate
// 10 individual blocks.
for (int i = 0; i < 10; i++) {
bob.alignedBytes(k64K, 1);
}
}
}
DEF_TEST(SubRunAllocator, r) {
static int created = 0;
static int destroyed = 0;
struct Foo {
Foo() : fI{-2}, fX{-3} { created++; }
Foo(int i, float x) : fI{i}, fX{x} { created++; }
~Foo() { destroyed++; }
int fI;
float fX;
};
struct alignas(8) OddAlignment {
char buf[10];
};
auto exercise = [&](SubRunAllocator* alloc) {
created = 0;
destroyed = 0;
{
int* p = alloc->makePOD<int>(3);
REPORTER_ASSERT(r, *p == 3);
int* q = alloc->makePOD<int>(7);
REPORTER_ASSERT(r, *q == 7);
REPORTER_ASSERT(r, *alloc->makePOD<int>(3) == 3);
auto foo = alloc->makeUnique<Foo>(3, 4.0f);
REPORTER_ASSERT(r, foo->fI == 3);
REPORTER_ASSERT(r, foo->fX == 4.0f);
REPORTER_ASSERT(r, created == 1);
REPORTER_ASSERT(r, destroyed == 0);
alloc->makePODArray<int>(10);
auto fooArray = alloc->makeUniqueArray<Foo>(10);
REPORTER_ASSERT(r, fooArray[3].fI == -2);
REPORTER_ASSERT(r, fooArray[4].fX == -3.0f);
REPORTER_ASSERT(r, created == 11);
REPORTER_ASSERT(r, destroyed == 0);
alloc->makePOD<OddAlignment>();
}
REPORTER_ASSERT(r, created == 11);
REPORTER_ASSERT(r, destroyed == 11);
};
// Exercise default arena
{
SubRunAllocator arena{0};
exercise(&arena);
}
// Exercise on stack arena
{
sktext::gpu::STSubRunAllocator<64, 16> arena;
exercise(&arena);
}
// Exercise arena with a heap allocated starting block
{
std::unique_ptr<char[]> block{new char[1024]};
SubRunAllocator arena{block.get(), 1024, 0};
exercise(&arena);
}
// Exercise the singly-link list of unique_ptrs use case
{
created = 0;
destroyed = 0;
SubRunAllocator arena;
struct Node {
Node(std::unique_ptr<Node, SubRunAllocator::Destroyer> next)
: fNext{std::move(next)} { created++; }
~Node() { destroyed++; }
std::unique_ptr<Node, SubRunAllocator::Destroyer> fNext;
};
std::unique_ptr<Node, SubRunAllocator::Destroyer> current = nullptr;
for (int i = 0; i < 128; i++) {
current = arena.makeUnique<Node>(std::move(current));
}
REPORTER_ASSERT(r, created == 128);
REPORTER_ASSERT(r, destroyed == 0);
}
REPORTER_ASSERT(r, created == 128);
REPORTER_ASSERT(r, destroyed == 128);
// Exercise the array ctor w/ a mapping function
{
struct I {
I(int v) : i{v} {}
~I() {}
int i;
};
sktext::gpu::STSubRunAllocator<64, 16> arena;
auto a = arena.makeUniqueArray<I>(8, [](size_t i) { return i; });
for (size_t i = 0; i < 8; i++) {
REPORTER_ASSERT(r, a[i].i == (int)i);
}
}
{
SubRunAllocator arena(4096);
void* ptr = arena.alignedBytes(4081, 8);
REPORTER_ASSERT(r, ((intptr_t)ptr & 7) == 0);
}
}
using TextBlob = sktext::gpu::TextBlob;
DEF_TEST(KeyEqualityOnPerspective, r) {
SkTextBlobBuilder builder;
SkFont font(SkTypeface::MakeDefault(), 16);
auto runBuffer = builder.allocRun(font, 1, 0.0f, 0.0f);
runBuffer.glyphs[0] = 3;
auto blob = builder.make();
sktext::GlyphRunBuilder grBuilder;
auto glyphRunList = grBuilder.blobToGlyphRunList(*blob, {100, 100});
SkPaint paint;
// Build the strike device.
SkSurfaceProps props;
#if !defined(SK_DISABLE_SDF_TEXT)
sktext::gpu::SDFTControl control(false, false, false, 1, 100);
#else
sktext::gpu::SDFTControl control{};
#endif
SkStrikeDeviceInfo strikeDevice{props, SkScalerContextFlags::kBoostContrast, &control};
SkMatrix matrix1;
matrix1.setAll(1, 0, 0, 0, 1, 0, 1, 1, 1);
SkMatrix matrix2;
matrix2.setAll(1, 0, 0, 0, 1, 0, 2, 2, 1);
auto key1 = std::get<1>(
TextBlob::Key::Make(glyphRunList, paint, matrix1, strikeDevice));
auto key2 = std::get<1>(
TextBlob::Key::Make(glyphRunList, paint, matrix1, strikeDevice));
auto key3 = std::get<1>(
TextBlob::Key::Make(glyphRunList, paint, matrix2, strikeDevice));
REPORTER_ASSERT(r, key1 == key2);
REPORTER_ASSERT(r, key1 == key3);
}