|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkColorPriv.h" | 
|  | #include "SkEndian.h" | 
|  | #include "SkFloatBits.h" | 
|  | #include "SkFloatingPoint.h" | 
|  | #include "SkMathPriv.h" | 
|  | #include "SkPoint.h" | 
|  | #include "SkRandom.h" | 
|  | #include "Test.h" | 
|  |  | 
|  | static void test_clz(skiatest::Reporter* reporter) { | 
|  | REPORTER_ASSERT(reporter, 32 == SkCLZ(0)); | 
|  | REPORTER_ASSERT(reporter, 31 == SkCLZ(1)); | 
|  | REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30)); | 
|  | REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U)); | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | uint32_t mask = rand.nextU(); | 
|  | // need to get some zeros for testing, but in some obscure way so the | 
|  | // compiler won't "see" that, and work-around calling the functions. | 
|  | mask >>= (mask & 31); | 
|  | int intri = SkCLZ(mask); | 
|  | int porta = SkCLZ_portable(mask); | 
|  | REPORTER_ASSERT(reporter, intri == porta); | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static float sk_fsel(float pred, float result_ge, float result_lt) { | 
|  | return pred >= 0 ? result_ge : result_lt; | 
|  | } | 
|  |  | 
|  | static float fast_floor(float x) { | 
|  | //    float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); | 
|  | float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); | 
|  | return (float)(x + big) - big; | 
|  | } | 
|  |  | 
|  | static float std_floor(float x) { | 
|  | return sk_float_floor(x); | 
|  | } | 
|  |  | 
|  | static void test_floor_value(skiatest::Reporter* reporter, float value) { | 
|  | float fast = fast_floor(value); | 
|  | float std = std_floor(value); | 
|  | REPORTER_ASSERT(reporter, std == fast); | 
|  | //    SkDebugf("value[%1.9f] std[%g] fast[%g] equal[%d]\n", | 
|  | //             value, std, fast, std == fast); | 
|  | } | 
|  |  | 
|  | static void test_floor(skiatest::Reporter* reporter) { | 
|  | static const float gVals[] = { | 
|  | 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) { | 
|  | test_floor_value(reporter, gVals[i]); | 
|  | //        test_floor_value(reporter, -gVals[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // test that SkMul16ShiftRound and SkMulDiv255Round return the same result | 
|  | static void test_muldivround(skiatest::Reporter* reporter) { | 
|  | #if 0 | 
|  | // this "complete" test is too slow, so we test a random sampling of it | 
|  |  | 
|  | for (int a = 0; a <= 32767; ++a) { | 
|  | for (int b = 0; b <= 32767; ++b) { | 
|  | unsigned prod0 = SkMul16ShiftRound(a, b, 8); | 
|  | unsigned prod1 = SkMulDiv255Round(a, b); | 
|  | SkASSERT(prod0 == prod1); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 10000; ++i) { | 
|  | unsigned a = rand.nextU() & 0x7FFF; | 
|  | unsigned b = rand.nextU() & 0x7FFF; | 
|  |  | 
|  | unsigned prod0 = SkMul16ShiftRound(a, b, 8); | 
|  | unsigned prod1 = SkMulDiv255Round(a, b); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, prod0 == prod1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static float float_blend(int src, int dst, float unit) { | 
|  | return dst + (src - dst) * unit; | 
|  | } | 
|  |  | 
|  | static int blend31(int src, int dst, int a31) { | 
|  | return dst + ((src - dst) * a31 * 2114 >> 16); | 
|  | //    return dst + ((src - dst) * a31 * 33 >> 10); | 
|  | } | 
|  |  | 
|  | static int blend31_slow(int src, int dst, int a31) { | 
|  | int prod = src * a31 + (31 - a31) * dst + 16; | 
|  | prod = (prod + (prod >> 5)) >> 5; | 
|  | return prod; | 
|  | } | 
|  |  | 
|  | static int blend31_round(int src, int dst, int a31) { | 
|  | int prod = (src - dst) * a31 + 16; | 
|  | prod = (prod + (prod >> 5)) >> 5; | 
|  | return dst + prod; | 
|  | } | 
|  |  | 
|  | static int blend31_old(int src, int dst, int a31) { | 
|  | a31 += a31 >> 4; | 
|  | return dst + ((src - dst) * a31 >> 5); | 
|  | } | 
|  |  | 
|  | // suppress unused code warning | 
|  | static int (*blend_functions[])(int, int, int) = { | 
|  | blend31, | 
|  | blend31_slow, | 
|  | blend31_round, | 
|  | blend31_old | 
|  | }; | 
|  |  | 
|  | static void test_blend31() { | 
|  | int failed = 0; | 
|  | int death = 0; | 
|  | if (false) { // avoid bit rot, suppress warning | 
|  | failed = (*blend_functions[0])(0,0,0); | 
|  | } | 
|  | for (int src = 0; src <= 255; src++) { | 
|  | for (int dst = 0; dst <= 255; dst++) { | 
|  | for (int a = 0; a <= 31; a++) { | 
|  | //                int r0 = blend31(src, dst, a); | 
|  | //                int r0 = blend31_round(src, dst, a); | 
|  | //                int r0 = blend31_old(src, dst, a); | 
|  | int r0 = blend31_slow(src, dst, a); | 
|  |  | 
|  | float f = float_blend(src, dst, a / 31.f); | 
|  | int r1 = (int)f; | 
|  | int r2 = SkScalarRoundToInt(f); | 
|  |  | 
|  | if (r0 != r1 && r0 != r2) { | 
|  | SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", | 
|  | src,   dst, a,        r0,      f); | 
|  | failed += 1; | 
|  | } | 
|  | if (r0 > 255) { | 
|  | death += 1; | 
|  | SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n", | 
|  | src,   dst, a,        r0,      f); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | SkDebugf("---- failed %d death %d\n", failed, death); | 
|  | } | 
|  |  | 
|  | static void test_blend(skiatest::Reporter* reporter) { | 
|  | for (int src = 0; src <= 255; src++) { | 
|  | for (int dst = 0; dst <= 255; dst++) { | 
|  | for (int a = 0; a <= 255; a++) { | 
|  | int r0 = SkAlphaBlend255(src, dst, a); | 
|  | float f1 = float_blend(src, dst, a / 255.f); | 
|  | int r1 = SkScalarRoundToInt(f1); | 
|  |  | 
|  | if (r0 != r1) { | 
|  | float diff = sk_float_abs(f1 - r1); | 
|  | diff = sk_float_abs(diff - 0.5f); | 
|  | if (diff > (1 / 255.f)) { | 
|  | #ifdef SK_DEBUG | 
|  | SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", | 
|  | src, dst, a, r0, f1); | 
|  | #endif | 
|  | REPORTER_ASSERT(reporter, false); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_length(skiatest::Reporter* reporter, | 
|  | const SkPoint& p, SkScalar targetLen) { | 
|  | float x = SkScalarToFloat(p.fX); | 
|  | float y = SkScalarToFloat(p.fY); | 
|  | float len = sk_float_sqrt(x*x + y*y); | 
|  |  | 
|  | len /= SkScalarToFloat(targetLen); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); | 
|  | } | 
|  |  | 
|  | static float nextFloat(SkRandom& rand) { | 
|  | SkFloatIntUnion data; | 
|  | data.fSignBitInt = rand.nextU(); | 
|  | return data.fFloat; | 
|  | } | 
|  |  | 
|  | /*  returns true if a == b as resulting from (int)x. Since it is undefined | 
|  | what to do if the float exceeds 2^32-1, we check for that explicitly. | 
|  | */ | 
|  | static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) { | 
|  | if (!(x == x)) {    // NAN | 
|  | return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32; | 
|  | } | 
|  | // for out of range, C is undefined, but skia always should return NaN32 | 
|  | if (x > SK_MaxS32) { | 
|  | return ((int32_t)si) == SK_MaxS32; | 
|  | } | 
|  | if (x < -SK_MaxS32) { | 
|  | return ((int32_t)si) == SK_MinS32; | 
|  | } | 
|  | return si == ni; | 
|  | } | 
|  |  | 
|  | static void assert_float_equal(skiatest::Reporter* reporter, const char op[], | 
|  | float x, uint32_t ni, uint32_t si) { | 
|  | if (!equal_float_native_skia(x, ni, si)) { | 
|  | ERRORF(reporter, "%s float %g bits %x native %x skia %x\n", | 
|  | op, x, SkFloat2Bits(x), ni, si); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_float_cast(skiatest::Reporter* reporter, float x) { | 
|  | int ix = (int)x; | 
|  | int iix = SkFloatToIntCast(x); | 
|  | assert_float_equal(reporter, "cast", x, ix, iix); | 
|  | } | 
|  |  | 
|  | static void test_float_floor(skiatest::Reporter* reporter, float x) { | 
|  | int ix = (int)floor(x); | 
|  | int iix = SkFloatToIntFloor(x); | 
|  | assert_float_equal(reporter, "floor", x, ix, iix); | 
|  | } | 
|  |  | 
|  | static void test_float_round(skiatest::Reporter* reporter, float x) { | 
|  | double xx = x + 0.5;    // need intermediate double to avoid temp loss | 
|  | int ix = (int)floor(xx); | 
|  | int iix = SkFloatToIntRound(x); | 
|  | assert_float_equal(reporter, "round", x, ix, iix); | 
|  | } | 
|  |  | 
|  | static void test_float_ceil(skiatest::Reporter* reporter, float x) { | 
|  | int ix = (int)ceil(x); | 
|  | int iix = SkFloatToIntCeil(x); | 
|  | assert_float_equal(reporter, "ceil", x, ix, iix); | 
|  | } | 
|  |  | 
|  | static void test_float_conversions(skiatest::Reporter* reporter, float x) { | 
|  | test_float_cast(reporter, x); | 
|  | test_float_floor(reporter, x); | 
|  | test_float_round(reporter, x); | 
|  | test_float_ceil(reporter, x); | 
|  | } | 
|  |  | 
|  | static void test_int2float(skiatest::Reporter* reporter, int ival) { | 
|  | float x0 = (float)ival; | 
|  | float x1 = SkIntToFloatCast(ival); | 
|  | float x2 = SkIntToFloatCast_NoOverflowCheck(ival); | 
|  | REPORTER_ASSERT(reporter, x0 == x1); | 
|  | REPORTER_ASSERT(reporter, x0 == x2); | 
|  | } | 
|  |  | 
|  | static void unittest_fastfloat(skiatest::Reporter* reporter) { | 
|  | SkRandom rand; | 
|  | size_t i; | 
|  |  | 
|  | static const float gFloats[] = { | 
|  | 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, | 
|  | 0.000000001f, 1000000000.f,     // doesn't overflow | 
|  | 0.0000000001f, 10000000000.f    // does overflow | 
|  | }; | 
|  | for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) { | 
|  | test_float_conversions(reporter, gFloats[i]); | 
|  | test_float_conversions(reporter, -gFloats[i]); | 
|  | } | 
|  |  | 
|  | for (int outer = 0; outer < 100; outer++) { | 
|  | rand.setSeed(outer); | 
|  | for (i = 0; i < 100000; i++) { | 
|  | float x = nextFloat(rand); | 
|  | test_float_conversions(reporter, x); | 
|  | } | 
|  |  | 
|  | test_int2float(reporter, 0); | 
|  | test_int2float(reporter, 1); | 
|  | test_int2float(reporter, -1); | 
|  | for (i = 0; i < 100000; i++) { | 
|  | // for now only test ints that are 24bits or less, since we don't | 
|  | // round (down) large ints the same as IEEE... | 
|  | int ival = rand.nextU() & 0xFFFFFF; | 
|  | test_int2float(reporter, ival); | 
|  | test_int2float(reporter, -ival); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static float make_zero() { | 
|  | return sk_float_sin(0); | 
|  | } | 
|  |  | 
|  | static void unittest_isfinite(skiatest::Reporter* reporter) { | 
|  | float nan = sk_float_asin(2); | 
|  | float inf = 1.0f / make_zero(); | 
|  | float big = 3.40282e+038f; | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); | 
|  |  | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsNaN(nan)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsFinite(big)); | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsFinite(-big)); | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsFinite(0)); | 
|  | } | 
|  |  | 
|  | static void test_muldiv255(skiatest::Reporter* reporter) { | 
|  | for (int a = 0; a <= 255; a++) { | 
|  | for (int b = 0; b <= 255; b++) { | 
|  | int ab = a * b; | 
|  | float s = ab / 255.0f; | 
|  | int round = (int)floorf(s + 0.5f); | 
|  | int trunc = (int)floorf(s); | 
|  |  | 
|  | int iround = SkMulDiv255Round(a, b); | 
|  | int itrunc = SkMulDiv255Trunc(a, b); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, iround == round); | 
|  | REPORTER_ASSERT(reporter, itrunc == trunc); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, itrunc <= iround); | 
|  | REPORTER_ASSERT(reporter, iround <= a); | 
|  | REPORTER_ASSERT(reporter, iround <= b); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_muldiv255ceiling(skiatest::Reporter* reporter) { | 
|  | for (int c = 0; c <= 255; c++) { | 
|  | for (int a = 0; a <= 255; a++) { | 
|  | int product = (c * a + 255); | 
|  | int expected_ceiling = (product + (product >> 8)) >> 8; | 
|  | int webkit_ceiling = (c * a + 254) / 255; | 
|  | REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); | 
|  | int skia_ceiling = SkMulDiv255Ceiling(c, a); | 
|  | REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_copysign(skiatest::Reporter* reporter) { | 
|  | static const int32_t gTriples[] = { | 
|  | // x, y, expected result | 
|  | 0, 0, 0, | 
|  | 0, 1, 0, | 
|  | 0, -1, 0, | 
|  | 1, 0, 1, | 
|  | 1, 1, 1, | 
|  | 1, -1, -1, | 
|  | -1, 0, 1, | 
|  | -1, 1, 1, | 
|  | -1, -1, -1, | 
|  | }; | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { | 
|  | REPORTER_ASSERT(reporter, | 
|  | SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); | 
|  | float x = (float)gTriples[i]; | 
|  | float y = (float)gTriples[i+1]; | 
|  | float expected = (float)gTriples[i+2]; | 
|  | REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); | 
|  | } | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int j = 0; j < 1000; j++) { | 
|  | int ix = rand.nextS(); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); | 
|  |  | 
|  | SkScalar sx = rand.nextSScalar1(); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(Math, reporter) { | 
|  | int         i; | 
|  | SkRandom    rand; | 
|  |  | 
|  | // these should assert | 
|  | #if 0 | 
|  | SkToS8(128); | 
|  | SkToS8(-129); | 
|  | SkToU8(256); | 
|  | SkToU8(-5); | 
|  |  | 
|  | SkToS16(32768); | 
|  | SkToS16(-32769); | 
|  | SkToU16(65536); | 
|  | SkToU16(-5); | 
|  |  | 
|  | if (sizeof(size_t) > 4) { | 
|  | SkToS32(4*1024*1024); | 
|  | SkToS32(-4*1024*1024); | 
|  | SkToU32(5*1024*1024); | 
|  | SkToU32(-5); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | test_muldiv255(reporter); | 
|  | test_muldiv255ceiling(reporter); | 
|  | test_copysign(reporter); | 
|  |  | 
|  | { | 
|  | SkScalar x = SK_ScalarNaN; | 
|  | REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 1000; i++) { | 
|  | int value = rand.nextS16(); | 
|  | int max = rand.nextU16(); | 
|  |  | 
|  | int clamp = SkClampMax(value, max); | 
|  | int clamp2 = value < 0 ? 0 : (value > max ? max : value); | 
|  | REPORTER_ASSERT(reporter, clamp == clamp2); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 10000; i++) { | 
|  | SkPoint p; | 
|  |  | 
|  | // These random values are being treated as 32-bit-patterns, not as | 
|  | // ints; calling SkIntToScalar() here produces crashes. | 
|  | p.setLength((SkScalar) rand.nextS(), | 
|  | (SkScalar) rand.nextS(), | 
|  | SK_Scalar1); | 
|  | check_length(reporter, p, SK_Scalar1); | 
|  | p.setLength((SkScalar) (rand.nextS() >> 13), | 
|  | (SkScalar) (rand.nextS() >> 13), | 
|  | SK_Scalar1); | 
|  | check_length(reporter, p, SK_Scalar1); | 
|  | } | 
|  |  | 
|  | { | 
|  | SkFixed result = SkFixedDiv(100, 100); | 
|  | REPORTER_ASSERT(reporter, result == SK_Fixed1); | 
|  | result = SkFixedDiv(1, SK_Fixed1); | 
|  | REPORTER_ASSERT(reporter, result == 1); | 
|  | } | 
|  |  | 
|  | unittest_fastfloat(reporter); | 
|  | unittest_isfinite(reporter); | 
|  |  | 
|  | for (i = 0; i < 10000; i++) { | 
|  | SkFixed numer = rand.nextS(); | 
|  | SkFixed denom = rand.nextS(); | 
|  | SkFixed result = SkFixedDiv(numer, denom); | 
|  | int64_t check = ((int64_t)numer << 16) / denom; | 
|  |  | 
|  | (void)SkCLZ(numer); | 
|  | (void)SkCLZ(denom); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); | 
|  | if (check > SK_MaxS32) { | 
|  | check = SK_MaxS32; | 
|  | } else if (check < -SK_MaxS32) { | 
|  | check = SK_MinS32; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, result == (int32_t)check); | 
|  | } | 
|  |  | 
|  | test_blend(reporter); | 
|  |  | 
|  | if (false) test_floor(reporter); | 
|  |  | 
|  | // disable for now | 
|  | if (false) test_blend31();  // avoid bit rot, suppress warning | 
|  |  | 
|  | test_muldivround(reporter); | 
|  | test_clz(reporter); | 
|  | } | 
|  |  | 
|  | template <typename T> struct PairRec { | 
|  | T   fYin; | 
|  | T   fYang; | 
|  | }; | 
|  |  | 
|  | DEF_TEST(TestEndian, reporter) { | 
|  | static const PairRec<uint16_t> g16[] = { | 
|  | { 0x0,      0x0     }, | 
|  | { 0xFFFF,   0xFFFF  }, | 
|  | { 0x1122,   0x2211  }, | 
|  | }; | 
|  | static const PairRec<uint32_t> g32[] = { | 
|  | { 0x0,          0x0         }, | 
|  | { 0xFFFFFFFF,   0xFFFFFFFF  }, | 
|  | { 0x11223344,   0x44332211  }, | 
|  | }; | 
|  | static const PairRec<uint64_t> g64[] = { | 
|  | { 0x0,      0x0                             }, | 
|  | { 0xFFFFFFFFFFFFFFFFULL,  0xFFFFFFFFFFFFFFFFULL  }, | 
|  | { 0x1122334455667788ULL,  0x8877665544332211ULL  }, | 
|  | }; | 
|  |  | 
|  | REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value); | 
|  | REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value); | 
|  | REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value); | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) { | 
|  | REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin)); | 
|  | } | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) { | 
|  | REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin)); | 
|  | } | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) { | 
|  | REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static void test_divmod(skiatest::Reporter* r) { | 
|  | const struct { | 
|  | T numer; | 
|  | T denom; | 
|  | } kEdgeCases[] = { | 
|  | {(T)17, (T)17}, | 
|  | {(T)17, (T)4}, | 
|  | {(T)0,  (T)17}, | 
|  | // For unsigned T these negatives are just some large numbers.  Doesn't hurt to test them. | 
|  | {(T)-17, (T)-17}, | 
|  | {(T)-17, (T)4}, | 
|  | {(T)17,  (T)-4}, | 
|  | {(T)-17, (T)-4}, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) { | 
|  | const T numer = kEdgeCases[i].numer; | 
|  | const T denom = kEdgeCases[i].denom; | 
|  | T div, mod; | 
|  | SkTDivMod(numer, denom, &div, &mod); | 
|  | REPORTER_ASSERT(r, numer/denom == div); | 
|  | REPORTER_ASSERT(r, numer%denom == mod); | 
|  | } | 
|  |  | 
|  | SkRandom rand; | 
|  | for (size_t i = 0; i < 10000; i++) { | 
|  | const T numer = (T)rand.nextS(); | 
|  | T denom = 0; | 
|  | while (0 == denom) { | 
|  | denom = (T)rand.nextS(); | 
|  | } | 
|  | T div, mod; | 
|  | SkTDivMod(numer, denom, &div, &mod); | 
|  | REPORTER_ASSERT(r, numer/denom == div); | 
|  | REPORTER_ASSERT(r, numer%denom == mod); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u8, r) { | 
|  | test_divmod<uint8_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u16, r) { | 
|  | test_divmod<uint16_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u32, r) { | 
|  | test_divmod<uint32_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u64, r) { | 
|  | test_divmod<uint64_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s8, r) { | 
|  | test_divmod<int8_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s16, r) { | 
|  | test_divmod<int16_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s32, r) { | 
|  | test_divmod<int32_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s64, r) { | 
|  | test_divmod<int64_t>(r); | 
|  | } |