blob: 0a9ec84e6dbd6fb8330fd799571880505273e520 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkContourMeasure_DEFINED
#define SkContourMeasure_DEFINED
#include "include/core/SkPathTypes.h" // IWYU pragma: keep
#include "include/core/SkPoint.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSpan.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkTDArray.h"
#include <cstddef>
#include <memory>
class SkMatrix;
class SkPath;
class SkPathBuilder;
class SK_API SkContourMeasure : public SkRefCnt {
public:
/** Return the length of the contour.
*/
SkScalar length() const { return fLength; }
/** Pins distance to 0 <= distance <= length(), and then computes the corresponding
* position and tangent.
*/
[[nodiscard]] bool getPosTan(SkScalar distance, SkPoint* position, SkVector* tangent) const;
enum MatrixFlags {
kGetPosition_MatrixFlag = 0x01,
kGetTangent_MatrixFlag = 0x02,
kGetPosAndTan_MatrixFlag = kGetPosition_MatrixFlag | kGetTangent_MatrixFlag
};
/** Pins distance to 0 <= distance <= getLength(), and then computes
the corresponding matrix (by calling getPosTan).
Returns false if there is no path, or a zero-length path was specified, in which case
matrix is unchanged.
*/
[[nodiscard]] bool getMatrix(SkScalar distance, SkMatrix* matrix,
MatrixFlags flags = kGetPosAndTan_MatrixFlag) const;
/** Given a start and stop distance, return in dst the intervening segment(s).
If the segment is zero-length, return false, else return true.
startD and stopD are pinned to legal values (0..getLength()). If startD > stopD
then return false (and leave dst untouched).
Begin the segment with a moveTo if startWithMoveTo is true
*/
[[nodiscard]] bool getSegment(SkScalar startD, SkScalar stopD, SkPathBuilder* dst,
bool startWithMoveTo) const;
#ifdef SK_SUPPORT_MUTABLE_PATHEFFECT
[[nodiscard]] bool getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
bool startWithMoveTo) const;
#endif
/** Return true if the contour is closed()
*/
bool isClosed() const { return fIsClosed; }
/** Measurement data for individual verbs.
*/
struct VerbMeasure {
SkScalar fDistance; // Cumulative distance along the current contour.
SkPathVerb fVerb; // Verb type.
SkSpan<const SkPoint> fPts; // Verb points.
};
private:
struct Segment;
public:
/** Utility for iterating over the current contour verbs:
*
* for (const auto verb_measure : contour_measure) {
* ...
* }
*/
class ForwardVerbIterator final {
public:
VerbMeasure operator*() const;
ForwardVerbIterator& operator++() {
SkASSERT(!fSegments.empty());
fSegments = LastSegForCurrentVerb(fSegments.subspan(1));
return *this;
}
bool operator==(const ForwardVerbIterator& other) const {
SkASSERT(fSegments.data() != other.fSegments.data() ||
fSegments.size() == other.fSegments.size());
return fSegments.data() == other.fSegments.data();
}
bool operator!=(const ForwardVerbIterator& other) const {
return !((*this) == other);
}
private:
friend class SkContourMeasure;
ForwardVerbIterator(SkSpan<const Segment> segs, SkSpan<const SkPoint> pts)
: fSegments(LastSegForCurrentVerb(segs))
, fPts(pts) {}
static SkSpan<const Segment> LastSegForCurrentVerb(const SkSpan<const Segment>& segs) {
size_t i = 1;
while (i < segs.size() && segs[0].fPtIndex == segs[i].fPtIndex) {
++i;
}
return segs.subspan(i - 1);
}
// Remaining segments for forward iteration. The first segment in the span is
// adjusted to always point to the last segment of the current verb, such that its distance
// corresponds to the verb distance.
SkSpan<const Segment> fSegments;
// All path points (indexed in segments).
SkSpan<const SkPoint> fPts;
};
ForwardVerbIterator begin() const {
return ForwardVerbIterator(fSegments, fPts);
}
ForwardVerbIterator end() const {
return ForwardVerbIterator(SkSpan(fSegments.end(), 0), fPts);
}
private:
struct Segment {
SkScalar fDistance; // total distance up to this point
unsigned fPtIndex; // index into the fPts array
unsigned fTValue : 30;
unsigned fType : 2; // actually the enum SkSegType
// See SkPathMeasurePriv.h
SkScalar getScalarT() const;
static const Segment* Next(const Segment* seg) {
unsigned ptIndex = seg->fPtIndex;
do {
++seg;
} while (seg->fPtIndex == ptIndex);
return seg;
}
};
const SkTDArray<Segment> fSegments;
const SkTDArray<SkPoint> fPts; // Points used to define the segments
const SkScalar fLength;
const bool fIsClosed;
SkContourMeasure(SkTDArray<Segment>&& segs, SkTDArray<SkPoint>&& pts,
SkScalar length, bool isClosed);
~SkContourMeasure() override {}
const Segment* distanceToSegment(SkScalar distance, SkScalar* t) const;
friend class SkContourMeasureIter;
friend class SkPathMeasurePriv;
};
class SK_API SkContourMeasureIter {
public:
SkContourMeasureIter();
/**
* Initialize the Iter with a path.
* The parts of the path that are needed are copied, so the client is free to modify/delete
* the path after this call.
*
* resScale controls the precision of the measure. values > 1 increase the
* precision (and possibly slow down the computation).
*/
SkContourMeasureIter(const SkPath& path, bool forceClosed, SkScalar resScale = 1);
~SkContourMeasureIter();
SkContourMeasureIter(SkContourMeasureIter&&);
SkContourMeasureIter& operator=(SkContourMeasureIter&&);
/**
* Reset the Iter with a path.
* The parts of the path that are needed are copied, so the client is free to modify/delete
* the path after this call.
*/
void reset(const SkPath& path, bool forceClosed, SkScalar resScale = 1);
/**
* Iterates through contours in path, returning a contour-measure object for each contour
* in the path. Returns null when it is done.
*
* This only returns non-zero length contours, where a contour is the segments between
* a kMove_Verb and either ...
* - the next kMove_Verb
* - kClose_Verb (1 or more)
* - kDone_Verb
* If it encounters a zero-length contour, it is skipped.
*/
sk_sp<SkContourMeasure> next();
private:
class Impl;
std::unique_ptr<Impl> fImpl;
};
#endif