blob: 0f1a9870e1cb1d3e066e3b606fc535fb46386b5b [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkSpan_impl.h"
#include "src/base/SkBezierCurves.h"
#include "tests/Test.h"
#include <string>
// Grouping the test inputs into DoublePoints makes the test cases easier to read.
struct DoublePoint {
double x;
double y;
};
static bool nearly_equal(double expected, double actual) {
if (sk_double_nearly_zero(expected)) {
return sk_double_nearly_zero(actual);
}
return sk_doubles_nearly_equal_ulps(expected, actual, 64);
}
static void testCubicEvalAtT(skiatest::Reporter* reporter, std::string name,
SkSpan<const DoublePoint> curveInputs, double t,
const DoublePoint& expectedXY) {
skiatest::ReporterContext subtest(reporter, name);
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Should have 4 input points.");
REPORTER_ASSERT(reporter, t >= 0.0 && t <= 1.0,
"Invalid test case. t %f should be in [0, 1]", t);
auto [x, y] = SkBezierCubic::EvalAt(reinterpret_cast<const double*>(curveInputs.data()), t);
REPORTER_ASSERT(reporter, nearly_equal(expectedXY.x, x),
"X wrong %1.16f != %1.16f", expectedXY.x, x);
REPORTER_ASSERT(reporter, nearly_equal(expectedXY.y, y),
"Y wrong %1.16f != %1.16f", expectedXY.y, y);
}
DEF_TEST(BezierCubicEvalAt, reporter) {
testCubicEvalAtT(reporter, "linear curve @0.1234",
{{ 0, 0 }, { 0, 0 }, { 10, 10 }, { 10, 10 }},
0.1234,
{ 0.4192451819200000, 0.4192451819200000 });
testCubicEvalAtT(reporter, "linear curve @0.2345",
{{ 0, 0 }, { 5, 5 }, { 5, 5 }, { 10, 10 }},
0.2345,
{ 2.8215983862500000, 2.8215983862500000 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.0",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.0,
{ -10, -20 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.3456",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.3456,
{ -2.503786700800000, -3.31715344793600 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.5",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.5,
{ 1.75, 0.25 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=0.7891",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
0.7891,
{ 6.158763291450000, 5.938550084434000 });
testCubicEvalAtT(reporter, "Arbitrary Cubic, t=1.0",
{{ -10, -20 }, { -7, 5 }, { 14, -2 }, { 3, 13 }},
1.0,
{ 3, 13 });
}
static void testCubicConvertToPolynomial(skiatest::Reporter* reporter, std::string name,
SkSpan<const DoublePoint> curveInputs, bool yValues,
double expectedA, double expectedB,
double expectedC, double expectedD) {
skiatest::ReporterContext subtest(reporter, name);
REPORTER_ASSERT(reporter, curveInputs.size() == 4,
"Invalid test case. Need 4 points (start, control, control, end)");
skiatest::ReporterContext subsubtest(reporter, "SkBezierCurve Implementation");
const double* input = &curveInputs[0].x;
auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(input, yValues);
REPORTER_ASSERT(reporter, nearly_equal(expectedA, A), "%f != %f", expectedA, A);
REPORTER_ASSERT(reporter, nearly_equal(expectedB, B), "%f != %f", expectedB, B);
REPORTER_ASSERT(reporter, nearly_equal(expectedC, C), "%f != %f", expectedC, C);
REPORTER_ASSERT(reporter, nearly_equal(expectedD, D), "%f != %f", expectedD, D);
}
DEF_TEST(BezierCubicToPolynomials, reporter) {
// See also tests/PathOpsDCubicTest.cpp->SkDCubicPolynomialCoefficients
testCubicConvertToPolynomial(reporter, "Arbitrary control points X direction",
{{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, false, /*=yValues*/
-18, 36, -12, 1
);
testCubicConvertToPolynomial(reporter, "Arbitrary control points Y direction",
{{1, 2}, {-3, 4}, {5, -6}, {7, 8}}, true, /*=yValues*/
36, -36, 6, 2
);
}