blob: bc84c833d70cc1e512b78415f63c3fca6a174352 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrSkSLFP.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramBuilder.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrTexture.h"
#include "SkSLUtil.h"
GrSkSLFPFactory::GrSkSLFPFactory(const char* name, const GrShaderCaps* shaderCaps, const char* sksl)
: fName(name) {
SkSL::Program::Settings settings;
settings.fCaps = shaderCaps;
fBaseProgram = fCompiler.convertProgram(SkSL::Program::kPipelineStage_Kind,
SkSL::String(sksl),
settings);
if (fCompiler.errorCount()) {
SkDebugf("%s\n", fCompiler.errorText().c_str());
}
SkASSERT(fBaseProgram);
SkASSERT(!fCompiler.errorCount());
for (const auto& e : *fBaseProgram) {
if (e.fKind == SkSL::ProgramElement::kVar_Kind) {
SkSL::VarDeclarations& v = (SkSL::VarDeclarations&) e;
for (const auto& varStatement : v.fVars) {
const SkSL::Variable& var = *((SkSL::VarDeclaration&) *varStatement).fVar;
if (var.fModifiers.fFlags & SkSL::Modifiers::kIn_Flag) {
fInputVars.push_back(&var);
}
if (var.fModifiers.fLayout.fKey) {
fKeyVars.push_back(&var);
}
}
}
}
}
const SkSL::Program* GrSkSLFPFactory::getSpecialization(const SkSL::String& key, const void* inputs,
size_t inputSize) {
const auto& found = fSpecializations.find(key);
if (found != fSpecializations.end()) {
return found->second.get();
}
std::unordered_map<SkSL::String, SkSL::Program::Settings::Value> inputMap;
size_t offset = 0;
for (const auto& v : fInputVars) {
SkSL::String name(v->fName);
if (&v->fType == fCompiler.context().fInt_Type.get()) {
offset = SkAlign4(offset);
int32_t v = *(int32_t*) (((uint8_t*) inputs) + offset);
inputMap.insert(std::make_pair(name, SkSL::Program::Settings::Value(v)));
offset += sizeof(int32_t);
}
}
SkASSERT(offset == inputSize);
std::unique_ptr<SkSL::Program> specialized = fCompiler.specialize(*fBaseProgram, inputMap);
SkAssertResult(fCompiler.optimize(*specialized));
const SkSL::Program* result = specialized.get();
fSpecializations.insert(std::make_pair(key, std::move(specialized)));
return result;
}
class GrGLSLSkSLFP : public GrGLSLFragmentProcessor {
public:
GrGLSLSkSLFP(SkSL::String glsl, std::vector<SkSL::Compiler::FormatArg> formatArgs)
: fGLSL(glsl)
, fFormatArgs(formatArgs) {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
int substringStartIndex = 0;
int formatArgIndex = 0;
for (size_t i = 0; i < fGLSL.length(); ++i) {
char c = fGLSL[i];
if (c == '%') {
fragBuilder->codeAppend(fGLSL.c_str() + substringStartIndex,
i - substringStartIndex);
++i;
c = fGLSL[i];
switch (c) {
case 's':
switch (fFormatArgs[formatArgIndex++]) {
case SkSL::Compiler::FormatArg::kInput:
fragBuilder->codeAppend(args.fInputColor ? args.fInputColor
: "half4(1)");
break;
case SkSL::Compiler::FormatArg::kOutput:
fragBuilder->codeAppend(args.fOutputColor);
break;
}
break;
default:
fragBuilder->codeAppendf("%c", c);
}
substringStartIndex = i + 1;
}
}
fragBuilder->codeAppend(fGLSL.c_str() + substringStartIndex,
fGLSL.length() - substringStartIndex);
}
// nearly-finished GLSL; still contains printf-style "%s" format tokens
const SkSL::String fGLSL;
std::vector<SkSL::Compiler::FormatArg> fFormatArgs;
};
std::unique_ptr<GrFragmentProcessor> GrSkSLFP::Make(GrContext* context, int index, const char* name,
const char* sksl, const void* inputs,
size_t inputSize) {
return std::unique_ptr<GrFragmentProcessor>(new GrSkSLFP(
context->contextPriv().getFPFactoryCache(),
context->contextPriv().caps()->shaderCaps(),
index, name, sksl, inputs, inputSize));
}
GrSkSLFP::GrSkSLFP(sk_sp<GrSkSLFPFactoryCache> factoryCache, const GrShaderCaps* shaderCaps,
int index, const char* name, const char* sksl, const void* inputs,
size_t inputSize)
: INHERITED(kGrSkSLFP_ClassID, kNone_OptimizationFlags)
, fFactoryCache(factoryCache)
, fShaderCaps(sk_ref_sp(shaderCaps))
, fIndex(index)
, fName(name)
, fSkSL(sksl)
, fInputs(new int8_t[inputSize])
, fInputSize(inputSize) {
memcpy(fInputs.get(), inputs, inputSize);
}
GrSkSLFP::GrSkSLFP(const GrSkSLFP& other)
: INHERITED(kGrSkSLFP_ClassID, kNone_OptimizationFlags)
, fFactoryCache(other.fFactoryCache)
, fShaderCaps(other.fShaderCaps)
, fFactory(other.fFactory)
, fIndex(other.fIndex)
, fName(other.fName)
, fSkSL(other.fSkSL)
, fInputs(new int8_t[other.fInputSize])
, fInputSize(other.fInputSize) {
memcpy(fInputs.get(), other.fInputs.get(), fInputSize);
}
const char* GrSkSLFP::name() const {
return fName;
}
void GrSkSLFP::createFactory() const {
if (!fFactory) {
fFactory = fFactoryCache->get(fIndex);
if (!fFactory) {
fFactory = sk_sp<GrSkSLFPFactory>(new GrSkSLFPFactory(fName, fShaderCaps.get(), fSkSL));
fFactoryCache->set(fIndex, fFactory);
}
}
}
GrGLSLFragmentProcessor* GrSkSLFP::onCreateGLSLInstance() const {
this->createFactory();
const SkSL::Program* specialized = fFactory->getSpecialization(fKey, fInputs.get(), fInputSize);
SkSL::String glsl;
std::vector<SkSL::Compiler::FormatArg> formatArgs;
if (!fFactory->fCompiler.toPipelineStage(*specialized, &glsl, &formatArgs)) {
printf("%s\n", fFactory->fCompiler.errorText().c_str());
abort();
}
return new GrGLSLSkSLFP(glsl, formatArgs);
}
void GrSkSLFP::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
this->createFactory();
size_t offset = 0;
char* inputs = (char*) fInputs.get();
for (const auto& v : fFactory->fInputVars) {
if (&v->fType == fFactory->fCompiler.context().fInt_Type.get()) {
offset = SkAlign4(offset);
if (v->fModifiers.fLayout.fKey) {
fKey += inputs[offset + 0];
fKey += inputs[offset + 1];
fKey += inputs[offset + 2];
fKey += inputs[offset + 3];
b->add32(*(int32_t*) (inputs + offset));
}
offset += sizeof(int32_t);
}
else {
// unsupported input var type
SkASSERT(false);
}
}
SkASSERT(offset == fInputSize);
}
bool GrSkSLFP::onIsEqual(const GrFragmentProcessor& other) const {
const GrSkSLFP& sk = other.cast<GrSkSLFP>();
SkASSERT(fIndex != sk.fIndex || fInputSize == sk.fInputSize);
return fIndex == sk.fIndex &&
!memcmp(fInputs.get(), sk.fInputs.get(), fInputSize);
}
std::unique_ptr<GrFragmentProcessor> GrSkSLFP::clone() const {
return std::unique_ptr<GrFragmentProcessor>(new GrSkSLFP(*this));
}
// We have to do a bit of manual refcounting in the cache methods below. Ideally, we could just
// define fFactories to contain sk_sp<GrSkSLFPFactory> rather than GrSkSLFPFactory*, but that would
// require GrContext to include GrSkSLFP, which creates much bigger headaches than a few manual
// refcounts.
sk_sp<GrSkSLFPFactory> GrSkSLFPFactoryCache::get(int index) {
if (index >= (int) fFactories.size()) {
return nullptr;
}
GrSkSLFPFactory* result = fFactories[index];
result->ref();
return sk_sp<GrSkSLFPFactory>(result);
}
void GrSkSLFPFactoryCache::set(int index, sk_sp<GrSkSLFPFactory> factory) {
while (index >= (int) fFactories.size()) {
fFactories.emplace_back();
}
factory->ref();
SkASSERT(!fFactories[index]);
fFactories[index] = factory.get();
}
GrSkSLFPFactoryCache::~GrSkSLFPFactoryCache() {
for (GrSkSLFPFactory* factory : fFactories) {
if (factory) {
factory->unref();
}
}
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrSkSLFP);
#if GR_TEST_UTILS
#include "SkGr.h"
using Value = SkSL::Program::Settings::Value;
std::unique_ptr<GrFragmentProcessor> GrSkSLFP::TestCreate(GrProcessorTestData* d) {
int type = d->fRandom->nextULessThan(1);
switch (type) {
case 0: {
static int ditherIndex = NewIndex();
int rangeType = d->fRandom->nextULessThan(3);
return GrSkSLFP::Make(d->context(), ditherIndex, "Dither", SKSL_DITHER_SRC, &rangeType,
sizeof(rangeType));
}
}
SK_ABORT("unreachable");
return nullptr;
}
#endif