blob: 6768638d6cae25897f9406e6936ad211ee1bfacb [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h"
#include "include/gpu/ShaderErrorHandler.h"
#include "include/gpu/graphite/TextureInfo.h"
#include "include/private/base/SkTArray.h"
#include "src/core/SkSLTypeShared.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/PipelineUtils.h"
#include "src/gpu/graphite/Attribute.h"
#include "src/gpu/graphite/ContextUtils.h"
#include "src/gpu/graphite/GraphicsPipelineDesc.h"
#include "src/gpu/graphite/Log.h"
#include "src/gpu/graphite/RenderPassDesc.h"
#include "src/gpu/graphite/RendererProvider.h"
#include "src/gpu/graphite/RuntimeEffectDictionary.h"
#include "src/gpu/graphite/vk/VulkanCaps.h"
#include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h"
#include "src/gpu/graphite/vk/VulkanRenderPass.h"
#include "src/gpu/graphite/vk/VulkanSharedContext.h"
#include "src/gpu/vk/VulkanUtilsPriv.h"
#include "src/sksl/SkSLProgramKind.h"
#include "src/sksl/SkSLProgramSettings.h"
#include "src/sksl/ir/SkSLProgram.h"
namespace skgpu::graphite {
static inline VkFormat attrib_type_to_vkformat(VertexAttribType type) {
switch (type) {
case VertexAttribType::kFloat:
return VK_FORMAT_R32_SFLOAT;
case VertexAttribType::kFloat2:
return VK_FORMAT_R32G32_SFLOAT;
case VertexAttribType::kFloat3:
return VK_FORMAT_R32G32B32_SFLOAT;
case VertexAttribType::kFloat4:
return VK_FORMAT_R32G32B32A32_SFLOAT;
case VertexAttribType::kHalf:
return VK_FORMAT_R16_SFLOAT;
case VertexAttribType::kHalf2:
return VK_FORMAT_R16G16_SFLOAT;
case VertexAttribType::kHalf4:
return VK_FORMAT_R16G16B16A16_SFLOAT;
case VertexAttribType::kInt2:
return VK_FORMAT_R32G32_SINT;
case VertexAttribType::kInt3:
return VK_FORMAT_R32G32B32_SINT;
case VertexAttribType::kInt4:
return VK_FORMAT_R32G32B32A32_SINT;
case VertexAttribType::kByte:
return VK_FORMAT_R8_SINT;
case VertexAttribType::kByte2:
return VK_FORMAT_R8G8_SINT;
case VertexAttribType::kByte4:
return VK_FORMAT_R8G8B8A8_SINT;
case VertexAttribType::kUByte:
return VK_FORMAT_R8_UINT;
case VertexAttribType::kUByte2:
return VK_FORMAT_R8G8_UINT;
case VertexAttribType::kUByte4:
return VK_FORMAT_R8G8B8A8_UINT;
case VertexAttribType::kUByte_norm:
return VK_FORMAT_R8_UNORM;
case VertexAttribType::kUByte4_norm:
return VK_FORMAT_R8G8B8A8_UNORM;
case VertexAttribType::kShort2:
return VK_FORMAT_R16G16_SINT;
case VertexAttribType::kShort4:
return VK_FORMAT_R16G16B16A16_SINT;
case VertexAttribType::kUShort2:
return VK_FORMAT_R16G16_UINT;
case VertexAttribType::kUShort2_norm:
return VK_FORMAT_R16G16_UNORM;
case VertexAttribType::kInt:
return VK_FORMAT_R32_SINT;
case VertexAttribType::kUInt:
return VK_FORMAT_R32_UINT;
case VertexAttribType::kUShort_norm:
return VK_FORMAT_R16_UNORM;
case VertexAttribType::kUShort4_norm:
return VK_FORMAT_R16G16B16A16_UNORM;
}
SK_ABORT("Unknown vertex attrib type");
}
static void setup_vertex_input_state(
const SkSpan<const Attribute>& vertexAttrs,
const SkSpan<const Attribute>& instanceAttrs,
VkPipelineVertexInputStateCreateInfo* vertexInputInfo,
skia_private::STArray<2, VkVertexInputBindingDescription, true>* bindingDescs,
skia_private::STArray<16, VkVertexInputAttributeDescription>* attributeDescs) {
// Setup attribute & binding descriptions
int attribIndex = 0;
size_t vertexAttributeOffset = 0;
for (auto attrib : vertexAttrs) {
VkVertexInputAttributeDescription vkAttrib;
vkAttrib.location = attribIndex++;
vkAttrib.binding = VulkanGraphicsPipeline::kVertexBufferIndex;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = vertexAttributeOffset;
vertexAttributeOffset += attrib.sizeAlign4();
attributeDescs->push_back(vkAttrib);
}
size_t instanceAttributeOffset = 0;
for (auto attrib : instanceAttrs) {
VkVertexInputAttributeDescription vkAttrib;
vkAttrib.location = attribIndex++;
vkAttrib.binding = VulkanGraphicsPipeline::kInstanceBufferIndex;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = instanceAttributeOffset;
instanceAttributeOffset += attrib.sizeAlign4();
attributeDescs->push_back(vkAttrib);
}
if (bindingDescs && !vertexAttrs.empty()) {
bindingDescs->push_back() = {
VulkanGraphicsPipeline::kVertexBufferIndex,
(uint32_t) vertexAttributeOffset,
VK_VERTEX_INPUT_RATE_VERTEX
};
}
if (bindingDescs && !instanceAttrs.empty()) {
bindingDescs->push_back() = {
VulkanGraphicsPipeline::kInstanceBufferIndex,
(uint32_t) instanceAttributeOffset,
VK_VERTEX_INPUT_RATE_INSTANCE
};
}
memset(vertexInputInfo, 0, sizeof(VkPipelineVertexInputStateCreateInfo));
vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo->pNext = nullptr;
vertexInputInfo->flags = 0;
vertexInputInfo->vertexBindingDescriptionCount = bindingDescs ? bindingDescs->size() : 0;
vertexInputInfo->pVertexBindingDescriptions =
bindingDescs && !bindingDescs->empty() ? bindingDescs->begin() : VK_NULL_HANDLE;
vertexInputInfo->vertexAttributeDescriptionCount = attributeDescs ? attributeDescs->size() : 0;
vertexInputInfo->pVertexAttributeDescriptions =
attributeDescs && !attributeDescs->empty() ? attributeDescs->begin() : VK_NULL_HANDLE;
}
static VkPrimitiveTopology primitive_type_to_vk_topology(PrimitiveType primitiveType) {
switch (primitiveType) {
case PrimitiveType::kTriangles:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case PrimitiveType::kTriangleStrip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case PrimitiveType::kPoints:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
}
SkUNREACHABLE;
}
static void setup_input_assembly_state(PrimitiveType primitiveType,
VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) {
memset(inputAssemblyInfo, 0, sizeof(VkPipelineInputAssemblyStateCreateInfo));
inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyInfo->pNext = nullptr;
inputAssemblyInfo->flags = 0;
inputAssemblyInfo->primitiveRestartEnable = false;
inputAssemblyInfo->topology = primitive_type_to_vk_topology(primitiveType);
}
static VkStencilOp stencil_op_to_vk_stencil_op(StencilOp op) {
static const VkStencilOp gTable[] = {
VK_STENCIL_OP_KEEP, // kKeep
VK_STENCIL_OP_ZERO, // kZero
VK_STENCIL_OP_REPLACE, // kReplace
VK_STENCIL_OP_INVERT, // kInvert
VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap
VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap
VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp
VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp
};
static_assert(std::size(gTable) == kStencilOpCount);
static_assert(0 == (int)StencilOp::kKeep);
static_assert(1 == (int)StencilOp::kZero);
static_assert(2 == (int)StencilOp::kReplace);
static_assert(3 == (int)StencilOp::kInvert);
static_assert(4 == (int)StencilOp::kIncWrap);
static_assert(5 == (int)StencilOp::kDecWrap);
static_assert(6 == (int)StencilOp::kIncClamp);
static_assert(7 == (int)StencilOp::kDecClamp);
SkASSERT(op < (StencilOp)kStencilOpCount);
return gTable[(int)op];
}
static VkCompareOp compare_op_to_vk_compare_op(CompareOp op) {
static const VkCompareOp gTable[] = {
VK_COMPARE_OP_ALWAYS, // kAlways
VK_COMPARE_OP_NEVER, // kNever
VK_COMPARE_OP_GREATER, // kGreater
VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual
VK_COMPARE_OP_LESS, // kLess
VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual
VK_COMPARE_OP_EQUAL, // kEqual
VK_COMPARE_OP_NOT_EQUAL, // kNotEqual
};
static_assert(std::size(gTable) == kCompareOpCount);
static_assert(0 == (int)CompareOp::kAlways);
static_assert(1 == (int)CompareOp::kNever);
static_assert(2 == (int)CompareOp::kGreater);
static_assert(3 == (int)CompareOp::kGEqual);
static_assert(4 == (int)CompareOp::kLess);
static_assert(5 == (int)CompareOp::kLEqual);
static_assert(6 == (int)CompareOp::kEqual);
static_assert(7 == (int)CompareOp::kNotEqual);
SkASSERT(op < (CompareOp)kCompareOpCount);
return gTable[(int)op];
}
static void setup_stencil_op_state(VkStencilOpState* opState,
const DepthStencilSettings::Face& face,
uint32_t referenceValue) {
opState->failOp = stencil_op_to_vk_stencil_op(face.fStencilFailOp);
opState->passOp = stencil_op_to_vk_stencil_op(face.fDepthStencilPassOp);
opState->depthFailOp = stencil_op_to_vk_stencil_op(face.fDepthFailOp);
opState->compareOp = compare_op_to_vk_compare_op(face.fCompareOp);
opState->compareMask = face.fReadMask; // TODO - check this.
opState->writeMask = face.fWriteMask;
opState->reference = referenceValue;
}
static void setup_depth_stencil_state(const DepthStencilSettings& stencilSettings,
VkPipelineDepthStencilStateCreateInfo* stencilInfo) {
SkASSERT(stencilSettings.fDepthTestEnabled ||
stencilSettings.fDepthCompareOp == CompareOp::kAlways);
memset(stencilInfo, 0, sizeof(VkPipelineDepthStencilStateCreateInfo));
stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
stencilInfo->pNext = nullptr;
stencilInfo->flags = 0;
stencilInfo->depthTestEnable = stencilSettings.fDepthTestEnabled;
stencilInfo->depthWriteEnable = stencilSettings.fDepthWriteEnabled;
stencilInfo->depthCompareOp = compare_op_to_vk_compare_op(stencilSettings.fDepthCompareOp);
stencilInfo->depthBoundsTestEnable = VK_FALSE; // Default value TODO - Confirm
stencilInfo->stencilTestEnable = stencilSettings.fStencilTestEnabled;
if (stencilSettings.fStencilTestEnabled) {
setup_stencil_op_state(&stencilInfo->front,
stencilSettings.fFrontStencil,
stencilSettings.fStencilReferenceValue);
setup_stencil_op_state(&stencilInfo->back,
stencilSettings.fBackStencil,
stencilSettings.fStencilReferenceValue);
}
stencilInfo->minDepthBounds = 0.0f;
stencilInfo->maxDepthBounds = 1.0f;
}
static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) {
memset(viewportInfo, 0, sizeof(VkPipelineViewportStateCreateInfo));
viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportInfo->pNext = nullptr;
viewportInfo->flags = 0;
viewportInfo->viewportCount = 1;
viewportInfo->pViewports = nullptr; // This is set dynamically with a draw pass command
viewportInfo->scissorCount = 1;
viewportInfo->pScissors = nullptr; // This is set dynamically with a draw pass command
SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount);
}
static void setup_multisample_state(int numSamples,
VkPipelineMultisampleStateCreateInfo* multisampleInfo) {
memset(multisampleInfo, 0, sizeof(VkPipelineMultisampleStateCreateInfo));
multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleInfo->pNext = nullptr;
multisampleInfo->flags = 0;
SkAssertResult(skgpu::SampleCountToVkSampleCount(numSamples,
&multisampleInfo->rasterizationSamples));
multisampleInfo->sampleShadingEnable = VK_FALSE;
multisampleInfo->minSampleShading = 0.0f;
multisampleInfo->pSampleMask = nullptr;
multisampleInfo->alphaToCoverageEnable = VK_FALSE;
multisampleInfo->alphaToOneEnable = VK_FALSE;
}
static VkBlendFactor blend_coeff_to_vk_blend(skgpu::BlendCoeff coeff) {
switch (coeff) {
case skgpu::BlendCoeff::kZero:
return VK_BLEND_FACTOR_ZERO;
case skgpu::BlendCoeff::kOne:
return VK_BLEND_FACTOR_ONE;
case skgpu::BlendCoeff::kSC:
return VK_BLEND_FACTOR_SRC_COLOR;
case skgpu::BlendCoeff::kISC:
return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
case skgpu::BlendCoeff::kDC:
return VK_BLEND_FACTOR_DST_COLOR;
case skgpu::BlendCoeff::kIDC:
return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
case skgpu::BlendCoeff::kSA:
return VK_BLEND_FACTOR_SRC_ALPHA;
case skgpu::BlendCoeff::kISA:
return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
case skgpu::BlendCoeff::kDA:
return VK_BLEND_FACTOR_DST_ALPHA;
case skgpu::BlendCoeff::kIDA:
return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA;
case skgpu::BlendCoeff::kConstC:
return VK_BLEND_FACTOR_CONSTANT_COLOR;
case skgpu::BlendCoeff::kIConstC:
return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR;
case skgpu::BlendCoeff::kS2C:
return VK_BLEND_FACTOR_SRC1_COLOR;
case skgpu::BlendCoeff::kIS2C:
return VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR;
case skgpu::BlendCoeff::kS2A:
return VK_BLEND_FACTOR_SRC1_ALPHA;
case skgpu::BlendCoeff::kIS2A:
return VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
case skgpu::BlendCoeff::kIllegal:
return VK_BLEND_FACTOR_ZERO;
}
SkUNREACHABLE;
}
static VkBlendOp blend_equation_to_vk_blend_op(skgpu::BlendEquation equation) {
static const VkBlendOp gTable[] = {
// Basic blend ops
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
// Advanced blend ops
VK_BLEND_OP_SCREEN_EXT,
VK_BLEND_OP_OVERLAY_EXT,
VK_BLEND_OP_DARKEN_EXT,
VK_BLEND_OP_LIGHTEN_EXT,
VK_BLEND_OP_COLORDODGE_EXT,
VK_BLEND_OP_COLORBURN_EXT,
VK_BLEND_OP_HARDLIGHT_EXT,
VK_BLEND_OP_SOFTLIGHT_EXT,
VK_BLEND_OP_DIFFERENCE_EXT,
VK_BLEND_OP_EXCLUSION_EXT,
VK_BLEND_OP_MULTIPLY_EXT,
VK_BLEND_OP_HSL_HUE_EXT,
VK_BLEND_OP_HSL_SATURATION_EXT,
VK_BLEND_OP_HSL_COLOR_EXT,
VK_BLEND_OP_HSL_LUMINOSITY_EXT,
// Illegal.
VK_BLEND_OP_ADD,
};
static_assert(0 == (int)skgpu::BlendEquation::kAdd);
static_assert(1 == (int)skgpu::BlendEquation::kSubtract);
static_assert(2 == (int)skgpu::BlendEquation::kReverseSubtract);
static_assert(3 == (int)skgpu::BlendEquation::kScreen);
static_assert(4 == (int)skgpu::BlendEquation::kOverlay);
static_assert(5 == (int)skgpu::BlendEquation::kDarken);
static_assert(6 == (int)skgpu::BlendEquation::kLighten);
static_assert(7 == (int)skgpu::BlendEquation::kColorDodge);
static_assert(8 == (int)skgpu::BlendEquation::kColorBurn);
static_assert(9 == (int)skgpu::BlendEquation::kHardLight);
static_assert(10 == (int)skgpu::BlendEquation::kSoftLight);
static_assert(11 == (int)skgpu::BlendEquation::kDifference);
static_assert(12 == (int)skgpu::BlendEquation::kExclusion);
static_assert(13 == (int)skgpu::BlendEquation::kMultiply);
static_assert(14 == (int)skgpu::BlendEquation::kHSLHue);
static_assert(15 == (int)skgpu::BlendEquation::kHSLSaturation);
static_assert(16 == (int)skgpu::BlendEquation::kHSLColor);
static_assert(17 == (int)skgpu::BlendEquation::kHSLLuminosity);
static_assert(std::size(gTable) == skgpu::kBlendEquationCnt);
SkASSERT((unsigned)equation < skgpu::kBlendEquationCnt);
return gTable[(int)equation];
}
static void setup_color_blend_state(const skgpu::BlendInfo& blendInfo,
VkPipelineColorBlendStateCreateInfo* colorBlendInfo,
VkPipelineColorBlendAttachmentState* attachmentState) {
skgpu::BlendEquation equation = blendInfo.fEquation;
skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend;
skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = skgpu::BlendShouldDisable(equation, srcCoeff, dstCoeff);
memset(attachmentState, 0, sizeof(VkPipelineColorBlendAttachmentState));
attachmentState->blendEnable = !blendOff;
if (!blendOff) {
attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation);
attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation);
}
if (!blendInfo.fWritesColor) {
attachmentState->colorWriteMask = 0;
} else {
attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
}
memset(colorBlendInfo, 0, sizeof(VkPipelineColorBlendStateCreateInfo));
colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo->pNext = nullptr;
colorBlendInfo->flags = 0;
colorBlendInfo->logicOpEnable = VK_FALSE;
colorBlendInfo->attachmentCount = 1;
colorBlendInfo->pAttachments = attachmentState;
// colorBlendInfo->blendConstants is set dynamically
}
static void setup_raster_state(bool isWireframe,
VkPipelineRasterizationStateCreateInfo* rasterInfo) {
memset(rasterInfo, 0, sizeof(VkPipelineRasterizationStateCreateInfo));
rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterInfo->pNext = nullptr;
rasterInfo->flags = 0;
rasterInfo->depthClampEnable = VK_FALSE;
rasterInfo->rasterizerDiscardEnable = VK_FALSE;
rasterInfo->polygonMode = isWireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL;
rasterInfo->cullMode = VK_CULL_MODE_NONE;
rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterInfo->depthBiasEnable = VK_FALSE;
rasterInfo->depthBiasConstantFactor = 0.0f;
rasterInfo->depthBiasClamp = 0.0f;
rasterInfo->depthBiasSlopeFactor = 0.0f;
rasterInfo->lineWidth = 1.0f;
}
static void setup_shader_stage_info(VkShaderStageFlagBits stage,
VkShaderModule shaderModule,
VkPipelineShaderStageCreateInfo* shaderStageInfo) {
memset(shaderStageInfo, 0, sizeof(VkPipelineShaderStageCreateInfo));
shaderStageInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageInfo->pNext = nullptr;
shaderStageInfo->flags = 0;
shaderStageInfo->stage = stage;
shaderStageInfo->module = shaderModule;
shaderStageInfo->pName = "main";
shaderStageInfo->pSpecializationInfo = nullptr;
}
static VkDescriptorSetLayout descriptor_data_to_layout(const VulkanSharedContext* sharedContext,
const SkSpan<DescriptorData>& descriptorData) {
if (descriptorData.size() == 0) { return VK_NULL_HANDLE; }
VkDescriptorSetLayout setLayout;
DescriptorDataToVkDescSetLayout(sharedContext, descriptorData, &setLayout);
if (setLayout == VK_NULL_HANDLE) {
SKGPU_LOG_E("Failed to create descriptor set layout; pipeline creation will fail.\n");
return VK_NULL_HANDLE;
}
return setLayout;
}
static void destroy_desc_set_layouts(const VulkanSharedContext* sharedContext,
skia_private::TArray<VkDescriptorSetLayout>& setLayouts) {
for (int i = 0; i < setLayouts.size(); i++) {
if (setLayouts[i] != VK_NULL_HANDLE) {
VULKAN_CALL(sharedContext->interface(),
DestroyDescriptorSetLayout(sharedContext->device(),
setLayouts[i],
nullptr));
}
}
}
static VkPipelineLayout setup_pipeline_layout(const VulkanSharedContext* sharedContext,
bool usesIntrinsicConstantUbo,
bool hasStepUniforms,
int numPaintUniforms,
int numTextureSamplers,
int numInputAttachments) {
// Determine descriptor set layouts for this pipeline based upon render pass information.
skia_private::STArray<3, VkDescriptorSetLayout> setLayouts;
// Determine uniform descriptor set layout
skia_private::STArray<VulkanGraphicsPipeline::kNumUniformBuffers, DescriptorData>
uniformDescriptors;
if (usesIntrinsicConstantUbo) {
uniformDescriptors.push_back(VulkanGraphicsPipeline::kIntrinsicUniformBufferDescriptor);
}
if (hasStepUniforms) {
uniformDescriptors.push_back(VulkanGraphicsPipeline::kRenderStepUniformDescriptor);
}
if (numPaintUniforms > 0) {
uniformDescriptors.push_back(VulkanGraphicsPipeline::kPaintUniformDescriptor);
}
if (!uniformDescriptors.empty()) {
VkDescriptorSetLayout uniformSetLayout =
descriptor_data_to_layout(sharedContext, {uniformDescriptors});
if (uniformSetLayout == VK_NULL_HANDLE) { return VK_NULL_HANDLE; }
setLayouts.push_back(uniformSetLayout);
}
// Determine input attachment descriptor set layout
if (numInputAttachments > 0) {
// For now, we only expect to have up to 1 input attachment. We also share that descriptor
// set number with uniform descriptors for normal graphics pipeline usages, so verify that
// we are not using any uniform descriptors to avoid conflicts.
SkASSERT(numInputAttachments == 1 && uniformDescriptors.empty());
skia_private::TArray<DescriptorData> inputAttachmentDescriptors(numInputAttachments);
inputAttachmentDescriptors.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor);
VkDescriptorSetLayout inputAttachmentDescSetLayout =
descriptor_data_to_layout(sharedContext, {inputAttachmentDescriptors});
if (inputAttachmentDescSetLayout == VK_NULL_HANDLE) {
destroy_desc_set_layouts(sharedContext, setLayouts);
return VK_NULL_HANDLE;
}
setLayouts.push_back(inputAttachmentDescSetLayout);
}
// Determine texture/sampler descriptor set layout
if (numTextureSamplers > 0) {
skia_private::TArray<DescriptorData> textureSamplerDescs(numTextureSamplers);
for (int i = 0; i < numTextureSamplers; i++) {
textureSamplerDescs.push_back({DescriptorType::kCombinedTextureSampler,
/*count=*/1,
/*bindingIdx=*/i,
PipelineStageFlags::kFragmentShader});
}
VkDescriptorSetLayout textureSamplerDescSetLayout =
descriptor_data_to_layout(sharedContext, {textureSamplerDescs});
if (textureSamplerDescSetLayout == VK_NULL_HANDLE) {
destroy_desc_set_layouts(sharedContext, setLayouts);
return VK_NULL_HANDLE;
}
setLayouts.push_back(textureSamplerDescSetLayout);
}
// Generate a pipeline layout using the now-populated descriptor set layout array
VkPipelineLayoutCreateInfo layoutCreateInfo;
memset(&layoutCreateInfo, 0, sizeof(VkPipelineLayoutCreateFlags));
layoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layoutCreateInfo.pNext = nullptr;
layoutCreateInfo.flags = 0;
layoutCreateInfo.setLayoutCount = setLayouts.size();
layoutCreateInfo.pSetLayouts = setLayouts.begin();
// TODO: Add support for push constants.
layoutCreateInfo.pushConstantRangeCount = 0;
layoutCreateInfo.pPushConstantRanges = nullptr;
VkResult result;
VkPipelineLayout layout;
VULKAN_CALL_RESULT(sharedContext,
result,
CreatePipelineLayout(sharedContext->device(),
&layoutCreateInfo,
/*const VkAllocationCallbacks*=*/nullptr,
&layout));
// DescriptorSetLayouts can be deleted after the pipeline layout is created.
destroy_desc_set_layouts(sharedContext, setLayouts);
return result == VK_SUCCESS ? layout : VK_NULL_HANDLE;
}
static void destroy_shader_modules(const VulkanSharedContext* sharedContext,
VkShaderModule vsModule,
VkShaderModule fsModule) {
if (vsModule != VK_NULL_HANDLE) {
VULKAN_CALL(sharedContext->interface(),
DestroyShaderModule(sharedContext->device(), vsModule, nullptr));
}
if (fsModule != VK_NULL_HANDLE) {
VULKAN_CALL(sharedContext->interface(),
DestroyShaderModule(sharedContext->device(), fsModule, nullptr));
}
}
static void setup_dynamic_state(VkPipelineDynamicStateCreateInfo* dynamicInfo,
VkDynamicState* dynamicStates) {
memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo));
dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicInfo->pNext = VK_NULL_HANDLE;
dynamicInfo->flags = 0;
dynamicStates[0] = VK_DYNAMIC_STATE_VIEWPORT;
dynamicStates[1] = VK_DYNAMIC_STATE_SCISSOR;
dynamicStates[2] = VK_DYNAMIC_STATE_BLEND_CONSTANTS;
dynamicInfo->dynamicStateCount = 3;
dynamicInfo->pDynamicStates = dynamicStates;
}
sk_sp<VulkanGraphicsPipeline> VulkanGraphicsPipeline::Make(
const VulkanSharedContext* sharedContext,
const RuntimeEffectDictionary* runtimeDict,
const GraphicsPipelineDesc& pipelineDesc,
const RenderPassDesc& renderPassDesc,
const sk_sp<VulkanRenderPass>& compatibleRenderPass,
VkPipelineCache pipelineCache) {
SkSL::Program::Interface vsInterface, fsInterface;
SkSL::ProgramSettings settings;
settings.fForceNoRTFlip = true; // TODO: Confirm
ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler();
const RenderStep* step = sharedContext->rendererProvider()->lookup(pipelineDesc.renderStepID());
const bool useStorageBuffers = sharedContext->caps()->storageBufferPreferred();
if (step->vertexAttributes().size() + step->instanceAttributes().size() >
sharedContext->vulkanCaps().maxVertexAttributes()) {
SKGPU_LOG_W("Requested more than the supported number of vertex attributes");
return nullptr;
}
FragSkSLInfo fsSkSLInfo = BuildFragmentSkSL(sharedContext->caps(),
sharedContext->shaderCodeDictionary(),
runtimeDict,
step,
pipelineDesc.paintParamsID(),
useStorageBuffers,
renderPassDesc.fWriteSwizzle);
std::string& fsSkSL = fsSkSLInfo.fSkSL;
const bool localCoordsNeeded = fsSkSLInfo.fRequiresLocalCoords;
bool hasFragmentSkSL = !fsSkSL.empty();
std::string vsSPIRV, fsSPIRV;
VkShaderModule fsModule = VK_NULL_HANDLE, vsModule = VK_NULL_HANDLE;
if (hasFragmentSkSL) {
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
fsSkSL,
SkSL::ProgramKind::kGraphiteFragment,
settings,
&fsSPIRV,
&fsInterface,
errorHandler)) {
return nullptr;
}
fsModule = createVulkanShaderModule(sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT);
if (!fsModule) {
return nullptr;
}
}
VertSkSLInfo vsSkSLInfo = BuildVertexSkSL(sharedContext->caps()->resourceBindingRequirements(),
step,
useStorageBuffers,
localCoordsNeeded);
const std::string& vsSkSL = vsSkSLInfo.fSkSL;
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
vsSkSL,
SkSL::ProgramKind::kGraphiteVertex,
settings,
&vsSPIRV,
&vsInterface,
errorHandler)) {
return nullptr;
}
vsModule = createVulkanShaderModule(sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT);
if (!vsModule) {
// Clean up the other shader module before returning.
destroy_shader_modules(sharedContext, VK_NULL_HANDLE, fsModule);
return nullptr;
}
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
skia_private::STArray<2, VkVertexInputBindingDescription, true> bindingDescs;
skia_private::STArray<16, VkVertexInputAttributeDescription> attributeDescs;
setup_vertex_input_state(step->vertexAttributes(),
step->instanceAttributes(),
&vertexInputInfo,
&bindingDescs,
&attributeDescs);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo;
setup_input_assembly_state(step->primitiveType(), &inputAssemblyInfo);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo;
setup_depth_stencil_state(step->depthStencilSettings(), &depthStencilInfo);
VkPipelineViewportStateCreateInfo viewportInfo;
setup_viewport_scissor_state(&viewportInfo);
VkPipelineMultisampleStateCreateInfo multisampleInfo;
setup_multisample_state(renderPassDesc.fColorAttachment.fTextureInfo.numSamples(),
&multisampleInfo);
// We will only have one color blend attachment per pipeline.
VkPipelineColorBlendAttachmentState attachmentStates[1];
VkPipelineColorBlendStateCreateInfo colorBlendInfo;
setup_color_blend_state(fsSkSLInfo.fBlendInfo, &colorBlendInfo, attachmentStates);
VkPipelineRasterizationStateCreateInfo rasterInfo;
// TODO: Check for wire frame mode once that is an available context option within graphite.
setup_raster_state(/*isWireframe=*/false, &rasterInfo);
VkPipelineShaderStageCreateInfo pipelineShaderStages[2];
setup_shader_stage_info(VK_SHADER_STAGE_VERTEX_BIT,
vsModule,
&pipelineShaderStages[0]);
if (hasFragmentSkSL) {
setup_shader_stage_info(VK_SHADER_STAGE_FRAGMENT_BIT,
fsModule,
&pipelineShaderStages[1]);
}
// TODO: Query RenderPassDesc for input attachment information. For now, we only use one for
// loading MSAA from resolve so we can simply pass in 0 when not doing that.
VkPipelineLayout pipelineLayout = setup_pipeline_layout(sharedContext,
/*usesIntrinsicConstantUbo=*/true,
!step->uniforms().empty(),
fsSkSLInfo.fNumPaintUniforms,
fsSkSLInfo.fNumTexturesAndSamplers,
/*numInputAttachments=*/0);
if (pipelineLayout == VK_NULL_HANDLE) {
destroy_shader_modules(sharedContext, vsModule, fsModule);
return nullptr;
}
VkDynamicState dynamicStates[3];
VkPipelineDynamicStateCreateInfo dynamicInfo;
setup_dynamic_state(&dynamicInfo, dynamicStates);
bool loadMsaaFromResolve = renderPassDesc.fColorResolveAttachment.fTextureInfo.isValid() &&
renderPassDesc.fColorResolveAttachment.fLoadOp == LoadOp::kLoad;
VkGraphicsPipelineCreateInfo pipelineCreateInfo;
memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo));
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = hasFragmentSkSL ? 2 : 1;
pipelineCreateInfo.pStages = &pipelineShaderStages[0];
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineCreateInfo.pTessellationState = nullptr;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicInfo;
pipelineCreateInfo.layout = pipelineLayout;
pipelineCreateInfo.renderPass = compatibleRenderPass->renderPass();
pipelineCreateInfo.subpass = loadMsaaFromResolve ? 1 : 0;
pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineCreateInfo.basePipelineIndex = -1;
VkPipeline vkPipeline;
VkResult result;
{
TRACE_EVENT0_ALWAYS("skia.shaders", "VkCreateGraphicsPipeline");
VULKAN_CALL_RESULT(sharedContext,
result,
CreateGraphicsPipelines(sharedContext->device(),
pipelineCache,
/*createInfoCount=*/1,
&pipelineCreateInfo,
/*pAllocator=*/nullptr,
&vkPipeline));
}
if (result != VK_SUCCESS) {
SkDebugf("Failed to create pipeline. Error: %d\n", result);
return nullptr;
}
// After creating the pipeline object, we can clean up the VkShaderModule(s).
destroy_shader_modules(sharedContext, vsModule, fsModule);
#if defined(GRAPHITE_TEST_UTILS)
GraphicsPipeline::PipelineInfo pipelineInfo = {pipelineDesc.renderStepID(),
pipelineDesc.paintParamsID(),
std::move(vsSkSL),
std::move(fsSkSL),
"SPIR-V disassembly not available",
"SPIR-V disassembly not available"};
GraphicsPipeline::PipelineInfo* pipelineInfoPtr = &pipelineInfo;
#else
GraphicsPipeline::PipelineInfo* pipelineInfoPtr = nullptr;
#endif
return sk_sp<VulkanGraphicsPipeline>(
new VulkanGraphicsPipeline(sharedContext,
pipelineInfoPtr,
pipelineLayout,
vkPipeline,
fsSkSLInfo.fNumPaintUniforms > 0,
!step->uniforms().empty(),
fsSkSLInfo.fNumTexturesAndSamplers,
/*ownsPipelineLayout=*/true));
}
bool VulkanGraphicsPipeline::InitializeMSAALoadPipelineStructs(
const VulkanSharedContext* sharedContext,
VkShaderModule* outVertexShaderModule,
VkShaderModule* outFragShaderModule,
VkPipelineShaderStageCreateInfo* outShaderStageInfo,
VkPipelineLayout* outPipelineLayout) {
SkSL::Program::Interface vsInterface, fsInterface;
SkSL::ProgramSettings settings;
settings.fForceNoRTFlip = true;
std::string vsSPIRV, fsSPIRV;
ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler();
std::string vertShaderText;
vertShaderText.append(
"// MSAA Load Program VS\n"
"layout(vulkan, location=0) in float2 ndc_position;"
"void main() {"
"sk_Position.xy = ndc_position;"
"sk_Position.zw = half2(0, 1);"
"}");
std::string fragShaderText;
fragShaderText.append(
"layout(vulkan, input_attachment_index=0, set=0, binding=0) subpassInput uInput;"
"// MSAA Load Program FS\n"
"void main() {"
"sk_FragColor = subpassLoad(uInput);"
"}");
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
vertShaderText,
SkSL::ProgramKind::kGraphiteVertex,
settings,
&vsSPIRV,
&vsInterface,
errorHandler)) {
return false;
}
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
fragShaderText,
SkSL::ProgramKind::kGraphiteFragment,
settings,
&fsSPIRV,
&fsInterface,
errorHandler)) {
return false;
}
*outFragShaderModule =
createVulkanShaderModule(sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT);
if (*outFragShaderModule == VK_NULL_HANDLE) {
return false;
}
*outVertexShaderModule =
createVulkanShaderModule(sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT);
if (*outVertexShaderModule == VK_NULL_HANDLE) {
destroy_shader_modules(sharedContext, VK_NULL_HANDLE, *outFragShaderModule);
return false;
}
setup_shader_stage_info(VK_SHADER_STAGE_VERTEX_BIT,
*outVertexShaderModule,
&outShaderStageInfo[0]);
setup_shader_stage_info(VK_SHADER_STAGE_FRAGMENT_BIT,
*outFragShaderModule,
&outShaderStageInfo[1]);
// The load msaa pipeline takes no step or paint uniforms and no instance attributes. It only
// references one input attachment texture (which does not require a sampler) and one vertex
// attribute (NDC position)
skia_private::TArray<DescriptorData> inputAttachmentDescriptors(1);
inputAttachmentDescriptors.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor);
*outPipelineLayout = setup_pipeline_layout(sharedContext,
/*usesIntrinsicConstantUbo=*/false,
/*hasStepUniforms=*/false,
/*numPaintUniforms=*/0,
/*numTextureSamplers=*/0,
/*numInputAttachments=*/1);
if (*outPipelineLayout == VK_NULL_HANDLE) {
destroy_shader_modules(sharedContext, *outVertexShaderModule, *outFragShaderModule);
return false;
}
return true;
}
sk_sp<VulkanGraphicsPipeline> VulkanGraphicsPipeline::MakeLoadMSAAPipeline(
const VulkanSharedContext* sharedContext,
VkShaderModule vsModule,
VkShaderModule fsModule,
VkPipelineShaderStageCreateInfo* pipelineShaderStages,
VkPipelineLayout pipelineLayout,
sk_sp<VulkanRenderPass> compatibleRenderPass,
VkPipelineCache pipelineCache,
const TextureInfo& dstColorAttachmentTexInfo) {
int numSamples = dstColorAttachmentTexInfo.numSamples();
// Create vertex attribute list
Attribute vertexAttrib[1] = {{"ndc_position", VertexAttribType::kFloat2, SkSLType::kFloat2}};
SkSpan<const Attribute> loadMSAAVertexAttribs = {vertexAttrib};
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
skia_private::STArray<2, VkVertexInputBindingDescription, true> bindingDescs;
skia_private::STArray<16, VkVertexInputAttributeDescription> attributeDescs;
setup_vertex_input_state(loadMSAAVertexAttribs,
/*instanceAttrs=*/{}, // Load msaa pipeline takes no instance attribs
&vertexInputInfo,
&bindingDescs,
&attributeDescs);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo;
setup_input_assembly_state(PrimitiveType::kTriangleStrip, &inputAssemblyInfo);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo;
setup_depth_stencil_state(/*stencilSettings=*/{}, &depthStencilInfo);
VkPipelineViewportStateCreateInfo viewportInfo;
setup_viewport_scissor_state(&viewportInfo);
VkPipelineMultisampleStateCreateInfo multisampleInfo;
setup_multisample_state(numSamples, &multisampleInfo);
// We will only have one color blend attachment per pipeline.
VkPipelineColorBlendAttachmentState attachmentStates[1];
VkPipelineColorBlendStateCreateInfo colorBlendInfo;
setup_color_blend_state({}, &colorBlendInfo, attachmentStates);
VkPipelineRasterizationStateCreateInfo rasterInfo;
// TODO: Check for wire frame mode once that is an available context option within graphite.
setup_raster_state(/*isWireframe=*/false, &rasterInfo);
VkDynamicState dynamicStates[3];
VkPipelineDynamicStateCreateInfo dynamicInfo;
setup_dynamic_state(&dynamicInfo, dynamicStates);
VkGraphicsPipelineCreateInfo pipelineCreateInfo;
memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo));
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.pNext = nullptr;
pipelineCreateInfo.flags = 0;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = pipelineShaderStages;
pipelineCreateInfo.pVertexInputState = &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineCreateInfo.pTessellationState = nullptr;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicInfo;
pipelineCreateInfo.layout = pipelineLayout;
pipelineCreateInfo.renderPass = compatibleRenderPass->renderPass();
VkPipeline vkPipeline;
VkResult result;
{
TRACE_EVENT0_ALWAYS("skia.shaders", "CreateGraphicsPipeline");
SkASSERT(pipelineCache != VK_NULL_HANDLE);
VULKAN_CALL_RESULT(sharedContext,
result,
CreateGraphicsPipelines(sharedContext->device(),
pipelineCache,
/*createInfoCount=*/1,
&pipelineCreateInfo,
/*pAllocator=*/nullptr,
&vkPipeline));
}
if (result != VK_SUCCESS) {
SkDebugf("Failed to create pipeline. Error: %d\n", result);
return nullptr;
}
// TODO: If we want to track GraphicsPipeline::PipelineInfo in debug, we'll need to add
// PipelineDesc as an argument for this method. For now, just pass in nullptr.
return sk_sp<VulkanGraphicsPipeline>(
new VulkanGraphicsPipeline(sharedContext,
/*pipelineInfo=*/nullptr,
pipelineLayout,
vkPipeline,
/*hasFragmentUniforms=*/false,
/*hasStepUniforms=*/false,
/*numTextureSamplers*/0,
/*ownsPipelineLayout=*/false));
}
VulkanGraphicsPipeline::VulkanGraphicsPipeline(const skgpu::graphite::SharedContext* sharedContext,
PipelineInfo* pipelineInfo,
VkPipelineLayout pipelineLayout,
VkPipeline pipeline,
bool hasFragmentUniforms,
bool hasStepUniforms,
int numTextureSamplers,
bool ownsPipelineLayout)
: GraphicsPipeline(sharedContext, pipelineInfo)
, fPipelineLayout(pipelineLayout)
, fPipeline(pipeline)
, fHasFragmentUniforms(hasFragmentUniforms)
, fHasStepUniforms(hasStepUniforms)
, fNumTextureSamplers(numTextureSamplers)
, fOwnsPipelineLayout(ownsPipelineLayout) {}
void VulkanGraphicsPipeline::freeGpuData() {
auto sharedCtxt = static_cast<const VulkanSharedContext*>(this->sharedContext());
if (fPipeline != VK_NULL_HANDLE) {
VULKAN_CALL(sharedCtxt->interface(),
DestroyPipeline(sharedCtxt->device(), fPipeline, nullptr));
}
if (fOwnsPipelineLayout && fPipelineLayout != VK_NULL_HANDLE) {
VULKAN_CALL(sharedCtxt->interface(),
DestroyPipelineLayout(sharedCtxt->device(), fPipelineLayout, nullptr));
}
}
} // namespace skgpu::graphite