blob: 8a1cd01a7323a24fbfb6ceb34fcb41707272f38f [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/vk/VulkanCommandBuffer.h"
#include "include/private/base/SkTArray.h"
#include "src/gpu/graphite/DescriptorTypes.h"
#include "src/gpu/graphite/Log.h"
#include "src/gpu/graphite/vk/VulkanBuffer.h"
#include "src/gpu/graphite/vk/VulkanDescriptorSet.h"
#include "src/gpu/graphite/vk/VulkanGraphiteUtilsPriv.h"
#include "src/gpu/graphite/vk/VulkanResourceProvider.h"
#include "src/gpu/graphite/vk/VulkanSampler.h"
#include "src/gpu/graphite/vk/VulkanSharedContext.h"
#include "src/gpu/graphite/vk/VulkanTexture.h"
using namespace skia_private;
namespace skgpu::graphite {
class VulkanDescriptorSet;
std::unique_ptr<VulkanCommandBuffer> VulkanCommandBuffer::Make(
const VulkanSharedContext* sharedContext,
VulkanResourceProvider* resourceProvider) {
// Create VkCommandPool
VkCommandPoolCreateFlags cmdPoolCreateFlags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT;
if (sharedContext->isProtected() == Protected::kYes) {
cmdPoolCreateFlags |= VK_COMMAND_POOL_CREATE_PROTECTED_BIT;
}
const VkCommandPoolCreateInfo cmdPoolInfo = {
VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, // sType
nullptr, // pNext
cmdPoolCreateFlags, // CmdPoolCreateFlags
sharedContext->queueIndex(), // queueFamilyIndex
};
auto interface = sharedContext->interface();
VkResult result;
VkCommandPool pool;
VULKAN_CALL_RESULT(interface, result, CreateCommandPool(sharedContext->device(),
&cmdPoolInfo,
nullptr,
&pool));
if (result != VK_SUCCESS) {
return nullptr;
}
const VkCommandBufferAllocateInfo cmdInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType
nullptr, // pNext
pool, // commandPool
VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level
1 // bufferCount
};
VkCommandBuffer primaryCmdBuffer;
VULKAN_CALL_RESULT(interface, result, AllocateCommandBuffers(sharedContext->device(),
&cmdInfo,
&primaryCmdBuffer));
if (result != VK_SUCCESS) {
VULKAN_CALL(interface, DestroyCommandPool(sharedContext->device(), pool, nullptr));
return nullptr;
}
return std::unique_ptr<VulkanCommandBuffer>(new VulkanCommandBuffer(pool,
primaryCmdBuffer,
sharedContext,
resourceProvider));
}
VulkanCommandBuffer::VulkanCommandBuffer(VkCommandPool pool,
VkCommandBuffer primaryCommandBuffer,
const VulkanSharedContext* sharedContext,
VulkanResourceProvider* resourceProvider)
: fPool(pool)
, fPrimaryCommandBuffer(primaryCommandBuffer)
, fSharedContext(sharedContext)
, fResourceProvider(resourceProvider) {
// When making a new command buffer, we automatically begin the command buffer
this->begin();
}
VulkanCommandBuffer::~VulkanCommandBuffer() {
if (fActive) {
// Need to end command buffer before deleting it
VULKAN_CALL(fSharedContext->interface(), EndCommandBuffer(fPrimaryCommandBuffer));
fActive = false;
}
if (VK_NULL_HANDLE != fSubmitFence) {
VULKAN_CALL(fSharedContext->interface(), DestroyFence(fSharedContext->device(),
fSubmitFence,
nullptr));
}
// This should delete any command buffers as well.
VULKAN_CALL(fSharedContext->interface(), DestroyCommandPool(fSharedContext->device(),
fPool,
nullptr));
}
void VulkanCommandBuffer::onResetCommandBuffer() {
SkASSERT(!fActive);
VULKAN_CALL_ERRCHECK(fSharedContext->interface(), ResetCommandPool(fSharedContext->device(),
fPool,
0));
fActiveGraphicsPipeline = nullptr;
fBindUniformBuffers = true;
fTextureSamplerDescSetToBind = VK_NULL_HANDLE;
fUniformBuffersToBind.clear();
}
bool VulkanCommandBuffer::setNewCommandBufferResources() {
this->begin();
return true;
}
void VulkanCommandBuffer::begin() {
SkASSERT(!fActive);
VkCommandBufferBeginInfo cmdBufferBeginInfo;
memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo));
cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufferBeginInfo.pNext = nullptr;
cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
cmdBufferBeginInfo.pInheritanceInfo = nullptr;
VULKAN_CALL_ERRCHECK(fSharedContext->interface(), BeginCommandBuffer(fPrimaryCommandBuffer,
&cmdBufferBeginInfo));
fActive = true;
}
void VulkanCommandBuffer::end() {
SkASSERT(fActive);
SkASSERT(!fActiveRenderPass);
this->submitPipelineBarriers();
VULKAN_CALL_ERRCHECK(fSharedContext->interface(), EndCommandBuffer(fPrimaryCommandBuffer));
fActive = false;
}
static bool submit_to_queue(const VulkanInterface* interface,
VkQueue queue,
VkFence fence,
uint32_t waitCount,
const VkSemaphore* waitSemaphores,
const VkPipelineStageFlags* waitStages,
uint32_t commandBufferCount,
const VkCommandBuffer* commandBuffers,
uint32_t signalCount,
const VkSemaphore* signalSemaphores,
Protected protectedContext) {
VkProtectedSubmitInfo protectedSubmitInfo;
if (protectedContext == Protected::kYes) {
memset(&protectedSubmitInfo, 0, sizeof(VkProtectedSubmitInfo));
protectedSubmitInfo.sType = VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO;
protectedSubmitInfo.pNext = nullptr;
protectedSubmitInfo.protectedSubmit = VK_TRUE;
}
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = protectedContext == Protected::kYes ? &protectedSubmitInfo : nullptr;
submitInfo.waitSemaphoreCount = waitCount;
submitInfo.pWaitSemaphores = waitSemaphores;
submitInfo.pWaitDstStageMask = waitStages;
submitInfo.commandBufferCount = commandBufferCount;
submitInfo.pCommandBuffers = commandBuffers;
submitInfo.signalSemaphoreCount = signalCount;
submitInfo.pSignalSemaphores = signalSemaphores;
VkResult result;
VULKAN_CALL_RESULT(interface, result, QueueSubmit(queue, 1, &submitInfo, fence));
if (result != VK_SUCCESS) {
return false;
}
return true;
}
bool VulkanCommandBuffer::submit(VkQueue queue) {
this->end();
auto interface = fSharedContext->interface();
auto device = fSharedContext->device();
VkResult err;
if (fSubmitFence == VK_NULL_HANDLE) {
VkFenceCreateInfo fenceInfo;
memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VULKAN_CALL_RESULT(interface, err, CreateFence(device,
&fenceInfo,
nullptr,
&fSubmitFence));
if (err) {
fSubmitFence = VK_NULL_HANDLE;
return false;
}
} else {
// This cannot return DEVICE_LOST so we assert we succeeded.
VULKAN_CALL_RESULT(interface, err, ResetFences(device, 1, &fSubmitFence));
SkASSERT(err == VK_SUCCESS);
}
SkASSERT(fSubmitFence != VK_NULL_HANDLE);
bool submitted = submit_to_queue(interface,
queue,
fSubmitFence,
/*waitCount=*/0,
/*waitSemaphores=*/nullptr,
/*waitStages=*/nullptr,
/*commandBufferCount*/1,
&fPrimaryCommandBuffer,
/*signalCount=*/0,
/*signalSemaphores=*/nullptr,
fSharedContext->isProtected());
if (!submitted) {
// Destroy the fence or else we will try to wait forever for it to finish.
VULKAN_CALL(interface, DestroyFence(device, fSubmitFence, nullptr));
fSubmitFence = VK_NULL_HANDLE;
return false;
}
return true;
}
bool VulkanCommandBuffer::isFinished() {
SkASSERT(!fActive);
if (VK_NULL_HANDLE == fSubmitFence) {
return true;
}
VkResult err;
VULKAN_CALL_RESULT_NOCHECK(fSharedContext->interface(), err,
GetFenceStatus(fSharedContext->device(), fSubmitFence));
switch (err) {
case VK_SUCCESS:
case VK_ERROR_DEVICE_LOST:
return true;
case VK_NOT_READY:
return false;
default:
SKGPU_LOG_F("Error calling vkGetFenceStatus. Error: %d", err);
SK_ABORT("Got an invalid fence status");
return false;
}
}
void VulkanCommandBuffer::waitUntilFinished() {
if (fSubmitFence == VK_NULL_HANDLE) {
return;
}
VULKAN_CALL_ERRCHECK(fSharedContext->interface(), WaitForFences(fSharedContext->device(),
1,
&fSubmitFence,
/*waitAll=*/true,
/*timeout=*/UINT64_MAX));
}
bool VulkanCommandBuffer::onAddRenderPass(const RenderPassDesc& renderPassDesc,
const Texture* colorTexture,
const Texture* resolveTexture,
const Texture* depthStencilTexture,
SkRect viewport,
const DrawPassList& drawPasses) {
if (!this->beginRenderPass(renderPassDesc, colorTexture, resolveTexture, depthStencilTexture)) {
return false;
}
for (const auto& drawPass : drawPasses) {
this->addDrawPass(drawPass.get());
}
// TODO: Set viewport
this->endRenderPass();
return true;
}
bool VulkanCommandBuffer::beginRenderPass(const RenderPassDesc& renderPassDesc,
const Texture* colorTexture,
const Texture* resolveTexture,
const Texture* depthStencilTexture) {
const static VkAttachmentLoadOp vkLoadOp[] {
VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_LOAD_OP_DONT_CARE
};
static_assert((int)LoadOp::kLoad == 0);
static_assert((int)LoadOp::kClear == 1);
static_assert((int)LoadOp::kDiscard == 2);
static_assert(std::size(vkLoadOp) == kLoadOpCount);
const static VkAttachmentStoreOp vkStoreOp[] {
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_STORE_OP_DONT_CARE
};
static_assert((int)StoreOp::kStore == 0);
static_assert((int)StoreOp::kDiscard == 1);
static_assert(std::size(vkStoreOp) == kStoreOpCount);
// Get render pass descriptor
VkRenderingInfoKHR renderingInfo;
memset(&renderingInfo, 0, sizeof(VkRenderingInfoKHR));
renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR;
renderingInfo.renderArea = {{ 0, 0 },
{ (unsigned int) colorTexture->dimensions().width(),
(unsigned int) colorTexture->dimensions().height() }};
renderingInfo.layerCount = 1;
// Set up color attachment
VkRenderingAttachmentInfoKHR colorAttachment;
auto& colorInfo = renderPassDesc.fColorAttachment;
if (colorTexture) {
memset(&colorAttachment, 0, sizeof(VkRenderingAttachmentInfoKHR));
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
VulkanTexture* vulkanTexture =
const_cast<VulkanTexture*>(static_cast<const VulkanTexture*>(colorTexture));
colorAttachment.imageView =
vulkanTexture->getImageView(VulkanImageView::Usage::kAttachment)->imageView();
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = vkLoadOp[static_cast<int>(colorInfo.fLoadOp)];
colorAttachment.storeOp = vkStoreOp[static_cast<int>(colorInfo.fStoreOp)];
memcpy(&colorAttachment.clearValue.color.float32,
&renderPassDesc.fClearColor,
4*sizeof(float));
vulkanTexture->setImageLayout(this, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, false);
// Set up resolve attachment
if (resolveTexture) {
SkASSERT(renderPassDesc.fColorResolveAttachment.fStoreOp == StoreOp::kStore);
// TODO: check Texture matches RenderPassDesc
vulkanTexture =
const_cast<VulkanTexture*>(static_cast<const VulkanTexture*>(resolveTexture));
colorAttachment.resolveImageView =
vulkanTexture->getImageView(VulkanImageView::Usage::kAttachment)->imageView();
colorAttachment.resolveImageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
SkASSERT(colorAttachment.storeOp == VK_ATTACHMENT_STORE_OP_DONT_CARE);
vulkanTexture->setImageLayout(this, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, false);
}
renderingInfo.colorAttachmentCount = 1;
renderingInfo.pColorAttachments = &colorAttachment;
this->trackResource(sk_ref_sp(colorTexture));
}
// Set up depth/stencil attachments
VkRenderingAttachmentInfoKHR depthAttachment;
VkRenderingAttachmentInfoKHR stencilAttachment;
auto& depthStencilInfo = renderPassDesc.fDepthStencilAttachment;
if (depthStencilTexture) {
VulkanTexture* vulkanTexture =
const_cast<VulkanTexture*>(static_cast<const VulkanTexture*>(depthStencilTexture));
VkImageView imageView =
vulkanTexture->getImageView(VulkanImageView::Usage::kAttachment)->imageView();
VulkanTextureInfo vkTexInfo;
depthStencilTexture->textureInfo().getVulkanTextureInfo(&vkTexInfo);
if (VkFormatIsDepth(vkTexInfo.fFormat)) {
memset(&depthAttachment, 0, sizeof(VkRenderingAttachmentInfoKHR));
depthAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
depthAttachment.imageView = imageView;
depthAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthAttachment.loadOp = vkLoadOp[static_cast<int>(depthStencilInfo.fLoadOp)];
depthAttachment.storeOp = vkStoreOp[static_cast<int>(depthStencilInfo.fStoreOp)];
depthAttachment.clearValue.depthStencil.depth = renderPassDesc.fClearDepth;
renderingInfo.pDepthAttachment = &depthAttachment;
}
if (VkFormatIsStencil(vkTexInfo.fFormat)) {
memset(&stencilAttachment, 0, sizeof(VkRenderingAttachmentInfoKHR));
stencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
stencilAttachment.imageView = imageView;
stencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
stencilAttachment.loadOp = vkLoadOp[static_cast<int>(depthStencilInfo.fLoadOp)];
stencilAttachment.storeOp = vkStoreOp[static_cast<int>(depthStencilInfo.fStoreOp)];
stencilAttachment.clearValue.depthStencil.stencil = renderPassDesc.fClearStencil;
renderingInfo.pStencilAttachment = &stencilAttachment;
}
vulkanTexture->setImageLayout(this, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, false);
this->trackResource(sk_ref_sp(depthStencilTexture));
}
// TODO: If needed, load MSAA from resolve
// Only possible with RenderPass interface, not beginRendering()
VULKAN_CALL(fSharedContext->interface(),
CmdBeginRendering(fPrimaryCommandBuffer, &renderingInfo));
fActiveRenderPass = true;
return true;
}
void VulkanCommandBuffer::endRenderPass() {
SkASSERT(fActive);
VULKAN_CALL(fSharedContext->interface(), CmdEndRendering(fPrimaryCommandBuffer));
fActiveRenderPass = false;
}
void VulkanCommandBuffer::addDrawPass(const DrawPass* drawPass) {
drawPass->addResourceRefs(this);
for (auto [type, cmdPtr] : drawPass->commands()) {
switch (type) {
case DrawPassCommands::Type::kBindGraphicsPipeline: {
auto bgp = static_cast<DrawPassCommands::BindGraphicsPipeline*>(cmdPtr);
this->bindGraphicsPipeline(drawPass->getPipeline(bgp->fPipelineIndex));
break;
}
case DrawPassCommands::Type::kSetBlendConstants: {
auto sbc = static_cast<DrawPassCommands::SetBlendConstants*>(cmdPtr);
this->setBlendConstants(sbc->fBlendConstants);
break;
}
case DrawPassCommands::Type::kBindUniformBuffer: {
auto bub = static_cast<DrawPassCommands::BindUniformBuffer*>(cmdPtr);
this->recordBufferBindingInfo(bub->fInfo, bub->fSlot);
break;
}
case DrawPassCommands::Type::kBindDrawBuffers: {
auto bdb = static_cast<DrawPassCommands::BindDrawBuffers*>(cmdPtr);
this->bindDrawBuffers(
bdb->fVertices, bdb->fInstances, bdb->fIndices, bdb->fIndirect);
break;
}
case DrawPassCommands::Type::kBindTexturesAndSamplers: {
auto bts = static_cast<DrawPassCommands::BindTexturesAndSamplers*>(cmdPtr);
this->recordTextureAndSamplerDescSet(*drawPass, *bts);
break;
}
case DrawPassCommands::Type::kSetScissor: {
auto ss = static_cast<DrawPassCommands::SetScissor*>(cmdPtr);
const SkIRect& rect = ss->fScissor;
this->setScissor(rect.fLeft, rect.fTop, rect.width(), rect.height());
break;
}
case DrawPassCommands::Type::kDraw: {
auto draw = static_cast<DrawPassCommands::Draw*>(cmdPtr);
this->draw(draw->fType, draw->fBaseVertex, draw->fVertexCount);
break;
}
case DrawPassCommands::Type::kDrawIndexed: {
auto draw = static_cast<DrawPassCommands::DrawIndexed*>(cmdPtr);
this->drawIndexed(
draw->fType, draw->fBaseIndex, draw->fIndexCount, draw->fBaseVertex);
break;
}
case DrawPassCommands::Type::kDrawInstanced: {
auto draw = static_cast<DrawPassCommands::DrawInstanced*>(cmdPtr);
this->drawInstanced(draw->fType,
draw->fBaseVertex,
draw->fVertexCount,
draw->fBaseInstance,
draw->fInstanceCount);
break;
}
case DrawPassCommands::Type::kDrawIndexedInstanced: {
auto draw = static_cast<DrawPassCommands::DrawIndexedInstanced*>(cmdPtr);
this->drawIndexedInstanced(draw->fType,
draw->fBaseIndex,
draw->fIndexCount,
draw->fBaseVertex,
draw->fBaseInstance,
draw->fInstanceCount);
break;
}
case DrawPassCommands::Type::kDrawIndirect: {
auto draw = static_cast<DrawPassCommands::DrawIndirect*>(cmdPtr);
this->drawIndirect(draw->fType);
break;
}
case DrawPassCommands::Type::kDrawIndexedIndirect: {
auto draw = static_cast<DrawPassCommands::DrawIndexedIndirect*>(cmdPtr);
this->drawIndexedIndirect(draw->fType);
break;
}
}
}
}
void VulkanCommandBuffer::bindGraphicsPipeline(const GraphicsPipeline* graphicsPipeline) {
// TODO: Implement.
// So long as 2 pipelines have the same pipeline layout, descriptor sets do not need to be
// re-bound. If the layouts differ, we should set fBindUniformBuffers to true.
fActiveGraphicsPipeline = static_cast<const VulkanGraphicsPipeline*>(graphicsPipeline);
}
void VulkanCommandBuffer::setBlendConstants(float* blendConstants) {
// TODO: Implement
}
void VulkanCommandBuffer::recordBufferBindingInfo(const BindBufferInfo& info, UniformSlot slot) {
unsigned int bufferIndex = 0;
switch (slot) {
case UniformSlot::kRenderStep:
bufferIndex = VulkanGraphicsPipeline::kRenderStepUniformBufferIndex;
break;
case UniformSlot::kPaint:
bufferIndex = VulkanGraphicsPipeline::kPaintUniformBufferIndex;
break;
default:
SkASSERT(false);
}
fUniformBuffersToBind[bufferIndex] = info;
fBindUniformBuffers = true;
}
void VulkanCommandBuffer::syncDescriptorSets() {
if (fBindUniformBuffers) {
this->bindUniformBuffers();
// Changes to descriptor sets in lower slot numbers disrupt later set bindings. Currently,
// the descriptor set which houses uniform buffers is at a lower slot than the texture /
// sampler set, so rebinding uniform buffers necessitates re-binding any texture/samplers.
fBindTextureSamplers = true;
}
if (fBindTextureSamplers) {
this->bindTextureSamplers();
}
}
void VulkanCommandBuffer::bindUniformBuffers() {
fBindUniformBuffers = false;
STArray<3, DescTypeAndCount> descriptors;
// We always bind at least one uniform buffer descriptor for intrinsic uniforms.
uint32_t numBuffers = 1;
descriptors[0].type = DescriptorType::kUniformBuffer;
descriptors[0].count = 1;
if (fActiveGraphicsPipeline->hasStepUniforms() &&
fUniformBuffersToBind[VulkanGraphicsPipeline::kRenderStepUniformBufferIndex]) {
descriptors[numBuffers].type = DescriptorType::kUniformBuffer;
descriptors[numBuffers].count = 1;
++numBuffers;
}
if (fActiveGraphicsPipeline->hasFragment() &&
fUniformBuffersToBind[VulkanGraphicsPipeline::kPaintUniformBufferIndex]) {
descriptors[numBuffers].type = DescriptorType::kUniformBuffer;
descriptors[numBuffers].count = 1;
++numBuffers;
}
VulkanDescriptorSet* set = fResourceProvider->findOrCreateDescriptorSet(
SkSpan<DescTypeAndCount>{&descriptors.front(), numBuffers});
if (!set) {
SKGPU_LOG_E("Unable to find or create descriptor set");
} else {
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
for (uint32_t i = 0; i < numBuffers; i++) {
VkDescriptorBufferInfo bufferInfo;
memset(&bufferInfo, 0, sizeof(VkDescriptorBufferInfo));
auto vulkanBuffer = static_cast<const VulkanBuffer*>(fUniformBuffersToBind[i].fBuffer);
bufferInfo.buffer = vulkanBuffer->vkBuffer();
bufferInfo.offset = fUniformBuffersToBind[i].fOffset;
bufferInfo.range = vulkanBuffer->size();
VkWriteDescriptorSet writeInfo;
memset(&writeInfo, 0, sizeof(VkWriteDescriptorSet));
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = *set->descriptorSet();
writeInfo.dstBinding = i;
writeInfo.dstArrayElement = 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeInfo.pImageInfo = nullptr;
writeInfo.pBufferInfo = &bufferInfo;
writeInfo.pTexelBufferView = nullptr;
writeDescriptorSets[i] = writeInfo;
}
VULKAN_CALL(fSharedContext->interface(),
UpdateDescriptorSets(fSharedContext->device(),
numBuffers,
&writeDescriptorSets[0],
/*descriptorCopyCount=*/0,
/*pDescriptorCopies=*/nullptr));
}
}
void VulkanCommandBuffer::bindDrawBuffers(const BindBufferInfo& vertices,
const BindBufferInfo& instances,
const BindBufferInfo& indices,
const BindBufferInfo& indirect) {
this->bindVertexBuffers(vertices.fBuffer,
vertices.fOffset,
instances.fBuffer,
instances.fOffset);
this->bindIndexBuffer(indices.fBuffer, indices.fOffset);
this->bindIndirectBuffer(indirect.fBuffer, indirect.fOffset);
}
void VulkanCommandBuffer::bindVertexBuffers(const Buffer* vertexBuffer,
size_t vertexOffset,
const Buffer* instanceBuffer,
size_t instanceOffset) {
this->bindInputBuffer(vertexBuffer, vertexOffset,
VulkanGraphicsPipeline::kVertexBufferIndex);
this->bindInputBuffer(instanceBuffer, instanceOffset,
VulkanGraphicsPipeline::kInstanceBufferIndex);
}
void VulkanCommandBuffer::bindInputBuffer(const Buffer* buffer, VkDeviceSize offset,
uint32_t binding) {
if (buffer) {
VkBuffer vkBuffer = static_cast<const VulkanBuffer*>(buffer)->vkBuffer();
SkASSERT(vkBuffer != VK_NULL_HANDLE);
if (vkBuffer != fBoundInputBuffers[binding] ||
offset != fBoundInputBufferOffsets[binding]) {
VULKAN_CALL(fSharedContext->interface(),
CmdBindVertexBuffers(fPrimaryCommandBuffer,
binding,
/*bindingCount=*/1,
&vkBuffer,
&offset));
fBoundInputBuffers[binding] = vkBuffer;
fBoundInputBufferOffsets[binding] = offset;
this->trackResource(sk_ref_sp(buffer));
}
}
}
void VulkanCommandBuffer::bindIndexBuffer(const Buffer* indexBuffer, size_t offset) {
if (indexBuffer) {
VkBuffer vkBuffer = static_cast<const VulkanBuffer*>(indexBuffer)->vkBuffer();
SkASSERT(vkBuffer != VK_NULL_HANDLE);
if (vkBuffer != fBoundIndexBuffer || offset != fBoundIndexBufferOffset) {
VULKAN_CALL(fSharedContext->interface(), CmdBindIndexBuffer(fPrimaryCommandBuffer,
vkBuffer,
offset,
VK_INDEX_TYPE_UINT16));
fBoundIndexBuffer = vkBuffer;
fBoundIndexBufferOffset = offset;
this->trackResource(sk_ref_sp(indexBuffer));
}
} else {
fBoundIndexBuffer = VK_NULL_HANDLE;
fBoundIndexBufferOffset = 0;
}
}
void VulkanCommandBuffer::bindIndirectBuffer(const Buffer* indirectBuffer, size_t offset) {
// Indirect buffers are not bound via the command buffer, but specified in the draw cmd.
if (indirectBuffer) {
fBoundIndirectBuffer = static_cast<const VulkanBuffer*>(indirectBuffer)->vkBuffer();
fBoundIndirectBufferOffset = offset;
this->trackResource(sk_ref_sp(indirectBuffer));
} else {
fBoundIndirectBuffer = VK_NULL_HANDLE;
fBoundIndirectBufferOffset = 0;
}
}
void VulkanCommandBuffer::recordTextureAndSamplerDescSet(
const DrawPass& drawPass, const DrawPassCommands::BindTexturesAndSamplers& command) {
// Query resource provider to obtain a descriptor set for the texture/samplers
std::vector<DescTypeAndCount> descriptors;
for (int i = 0; i < command.fNumTexSamplers; i++) {
descriptors.push_back({DescriptorType::kCombinedTextureSampler, 1});
}
VulkanDescriptorSet* set = fResourceProvider->findOrCreateDescriptorSet(
SkSpan<DescTypeAndCount>{&descriptors.front(), descriptors.size()});
if (!set) {
SKGPU_LOG_E("Unable to find or create descriptor set");
} else {
// Populate the descriptor set with texture/sampler descriptors
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
for (int i = 0; i < command.fNumTexSamplers; ++i) {
auto texture = static_cast<const VulkanTexture*>(
drawPass.getTexture(command.fTextureIndices[i]));
auto sampler = static_cast<const VulkanSampler*>(
drawPass.getSampler(command.fSamplerIndices[i]));
VkDescriptorImageInfo textureInfo;
memset(&textureInfo, 0, sizeof(VkDescriptorImageInfo));
textureInfo.sampler = sampler->vkSampler();
textureInfo.imageView = VK_NULL_HANDLE; // TODO: Obtain texture view from VulkanImage.
textureInfo.imageLayout = texture->currentLayout();
VkWriteDescriptorSet writeInfo;
memset(&writeInfo, 0, sizeof(VkWriteDescriptorSet));
writeInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeInfo.pNext = nullptr;
writeInfo.dstSet = *set->descriptorSet();
writeInfo.dstBinding = i;
writeInfo.dstArrayElement = 0;
writeInfo.descriptorCount = 1;
writeInfo.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeInfo.pImageInfo = &textureInfo;
writeInfo.pBufferInfo = nullptr;
writeInfo.pTexelBufferView = nullptr;
writeDescriptorSets[i] = writeInfo;
}
VULKAN_CALL(fSharedContext->interface(),
UpdateDescriptorSets(fSharedContext->device(),
command.fNumTexSamplers,
&writeDescriptorSets[0],
/*descriptorCopyCount=*/0,
/*pDescriptorCopies=*/nullptr));
// Store the updated descriptor set to be actually bound later on. This avoids binding and
// potentially having to re-bind in cases where earlier descriptor sets change while going
// through drawpass commands.
fTextureSamplerDescSetToBind = *(set->descriptorSet());
fBindTextureSamplers = true;
}
}
void VulkanCommandBuffer::bindTextureSamplers() {
fBindTextureSamplers = false;
if (fTextureSamplerDescSetToBind != VK_NULL_HANDLE) {
VULKAN_CALL(fSharedContext->interface(),
CmdBindDescriptorSets(fPrimaryCommandBuffer,
VK_PIPELINE_BIND_POINT_GRAPHICS,
fActiveGraphicsPipeline->layout(),
VulkanGraphicsPipeline::kTextureBindDescSetIndex,
/*setCount=*/1,
&fTextureSamplerDescSetToBind,
/*dynamicOffsetCount=*/0,
/*dynamicOffsets=*/nullptr));
}
}
void VulkanCommandBuffer::setScissor(unsigned int left, unsigned int top, unsigned int width,
unsigned int height) {
// TODO: Implement
}
void VulkanCommandBuffer::draw(PrimitiveType type,
unsigned int baseVertex,
unsigned int vertexCount) {
SkASSERT(fActiveRenderPass);
this->syncDescriptorSets();
// TODO: Implement
}
void VulkanCommandBuffer::drawIndexed(PrimitiveType type,
unsigned int baseIndex,
unsigned int indexCount,
unsigned int baseVertex) {
SkASSERT(fActiveRenderPass);
this->syncDescriptorSets();
// TODO: Implement
}
void VulkanCommandBuffer::drawInstanced(PrimitiveType type,
unsigned int baseVertex,
unsigned int vertexCount,
unsigned int baseInstance,
unsigned int instanceCount) {
SkASSERT(fActiveRenderPass);
this->syncDescriptorSets();
// TODO: Implement
}
void VulkanCommandBuffer::drawIndexedInstanced(PrimitiveType type,
unsigned int baseIndex,
unsigned int indexCount,
unsigned int baseVertex,
unsigned int baseInstance,
unsigned int instanceCount) {
SkASSERT(fActiveRenderPass);
this->syncDescriptorSets();
// TODO: Implement
}
void VulkanCommandBuffer::drawIndirect(PrimitiveType type) {
SkASSERT(fActiveRenderPass);
this->syncDescriptorSets();
// TODO: Implement
}
void VulkanCommandBuffer::drawIndexedIndirect(PrimitiveType type) {
SkASSERT(fActiveRenderPass);
this->syncDescriptorSets();
// TODO: Implement
}
bool VulkanCommandBuffer::onAddComputePass(const DispatchGroupList&) { return false; }
bool VulkanCommandBuffer::onCopyBufferToBuffer(const Buffer* srcBuffer,
size_t srcOffset,
const Buffer* dstBuffer,
size_t dstOffset,
size_t size) {
auto vkSrcBuffer = static_cast<const VulkanBuffer*>(srcBuffer);
auto vkDstBuffer = static_cast<const VulkanBuffer*>(dstBuffer);
SkASSERT(vkSrcBuffer->bufferUsageFlags() & VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
SkASSERT(vkDstBuffer->bufferUsageFlags() & VK_BUFFER_USAGE_TRANSFER_DST_BIT);
VkBufferCopy region;
memset(&region, 0, sizeof(VkBufferCopy));
region.srcOffset = srcOffset;
region.dstOffset = dstOffset;
region.size = size;
this->submitPipelineBarriers();
VULKAN_CALL(fSharedContext->interface(),
CmdCopyBuffer(fPrimaryCommandBuffer,
vkSrcBuffer->vkBuffer(),
vkDstBuffer->vkBuffer(),
/*regionCount=*/1,
&region));
return true;
}
bool VulkanCommandBuffer::onCopyTextureToBuffer(const Texture* texture,
SkIRect srcRect,
const Buffer* buffer,
size_t bufferOffset,
size_t bufferRowBytes) {
const VulkanTexture* srcTexture = static_cast<const VulkanTexture*>(texture);
auto dstBuffer = static_cast<const VulkanBuffer*>(buffer);
SkASSERT(dstBuffer->bufferUsageFlags() & VK_BUFFER_USAGE_TRANSFER_DST_BIT);
// Obtain the VkFormat of the source texture so we can determine bytes per block.
VulkanTextureInfo srcTextureInfo;
texture->textureInfo().getVulkanTextureInfo(&srcTextureInfo);
size_t bytesPerBlock = VkFormatBytesPerBlock(srcTextureInfo.fFormat);
// Set up copy region
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = bufferOffset;
// Vulkan expects bufferRowLength in texels, not bytes.
region.bufferRowLength = (uint32_t)(bufferRowBytes/bytesPerBlock);
region.bufferImageHeight = 0; // Tightly packed
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, /*mipLevel=*/0, 0, 1 };
region.imageOffset = { srcRect.left(), srcRect.top(), /*z=*/0 };
region.imageExtent = { (uint32_t)srcRect.width(), (uint32_t)srcRect.height(), /*depth=*/1 };
// Enable editing of the source texture so we can change its layout so it can be copied from.
const_cast<VulkanTexture*>(srcTexture)->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Set current access mask for buffer
const_cast<VulkanBuffer*>(dstBuffer)->setBufferAccess(this,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
this->submitPipelineBarriers();
VULKAN_CALL(fSharedContext->interface(),
CmdCopyImageToBuffer(fPrimaryCommandBuffer,
srcTexture->vkImage(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstBuffer->vkBuffer(),
/*regionCount=*/1,
&region));
return true;
}
bool VulkanCommandBuffer::onCopyBufferToTexture(const Buffer* buffer,
const Texture* texture,
const BufferTextureCopyData* copyData,
int count) {
auto srcBuffer = static_cast<const VulkanBuffer*>(buffer);
SkASSERT(srcBuffer->bufferUsageFlags() & VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
const VulkanTexture* dstTexture = static_cast<const VulkanTexture*>(texture);
// Obtain the VkFormat of the destination texture so we can determine bytes per block.
VulkanTextureInfo dstTextureInfo;
dstTexture->textureInfo().getVulkanTextureInfo(&dstTextureInfo);
size_t bytesPerBlock = VkFormatBytesPerBlock(dstTextureInfo.fFormat);
// Set up copy regions.
TArray<VkBufferImageCopy> regions(count);
for (int i = 0; i < count; ++i) {
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = copyData[i].fBufferOffset;
// copyData provides row length in bytes, but Vulkan expects bufferRowLength in texels.
region.bufferRowLength = (uint32_t)(copyData[i].fBufferRowBytes/bytesPerBlock);
region.bufferImageHeight = 0; // Tightly packed
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, copyData[i].fMipLevel, 0, 1 };
region.imageOffset = { copyData[i].fRect.left(),
copyData[i].fRect.top(),
/*z=*/0 };
region.imageExtent = { (uint32_t)copyData[i].fRect.width(),
(uint32_t)copyData[i].fRect.height(),
/*depth=*/1 };
}
// Enable editing of the destination texture so we can change its layout so it can be copied to.
const_cast<VulkanTexture*>(dstTexture)->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
this->submitPipelineBarriers();
VULKAN_CALL(fSharedContext->interface(),
CmdCopyBufferToImage(fPrimaryCommandBuffer,
srcBuffer->vkBuffer(),
dstTexture->vkImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regions.size(),
regions.begin()));
return true;
}
bool VulkanCommandBuffer::onCopyTextureToTexture(const Texture* src,
SkIRect srcRect,
const Texture* dst,
SkIPoint dstPoint) {
return false;
}
bool VulkanCommandBuffer::onSynchronizeBufferToCpu(const Buffer* buffer, bool* outDidResultInWork) {
static_cast<const VulkanBuffer*>(buffer)->setBufferAccess(this,
VK_ACCESS_HOST_READ_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
*outDidResultInWork = true;
return true;
}
bool VulkanCommandBuffer::onClearBuffer(const Buffer*, size_t offset, size_t size) {
return false;
}
void VulkanCommandBuffer::addBufferMemoryBarrier(const Resource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkBufferMemoryBarrier* barrier) {
SkASSERT(resource);
this->pipelineBarrier(resource,
srcStageMask,
dstStageMask,
byRegion,
kBufferMemory_BarrierType,
barrier);
}
void VulkanCommandBuffer::addBufferMemoryBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkBufferMemoryBarrier* barrier) {
// We don't pass in a resource here to the command buffer. The command buffer only is using it
// to hold a ref, but every place where we add a buffer memory barrier we are doing some other
// command with the buffer on the command buffer. Thus those other commands will already cause
// the command buffer to be holding a ref to the buffer.
this->pipelineBarrier(/*resource=*/nullptr,
srcStageMask,
dstStageMask,
byRegion,
kBufferMemory_BarrierType,
barrier);
}
void VulkanCommandBuffer::addImageMemoryBarrier(const Resource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkImageMemoryBarrier* barrier) {
SkASSERT(resource);
this->pipelineBarrier(resource,
srcStageMask,
dstStageMask,
byRegion,
kImageMemory_BarrierType,
barrier);
}
void VulkanCommandBuffer::pipelineBarrier(const Resource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
BarrierType barrierType,
void* barrier) {
// TODO: Do we need to handle wrapped command buffers?
// SkASSERT(!this->isWrapped());
SkASSERT(fActive);
#ifdef SK_DEBUG
// For images we can have barriers inside of render passes but they require us to add more
// support in subpasses which need self dependencies to have barriers inside them. Also, we can
// never have buffer barriers inside of a render pass. For now we will just assert that we are
// not in a render pass.
bool isValidSubpassBarrier = false;
if (barrierType == kImageMemory_BarrierType) {
VkImageMemoryBarrier* imgBarrier = static_cast<VkImageMemoryBarrier*>(barrier);
isValidSubpassBarrier = (imgBarrier->newLayout == imgBarrier->oldLayout) &&
(imgBarrier->srcQueueFamilyIndex == VK_QUEUE_FAMILY_IGNORED) &&
(imgBarrier->dstQueueFamilyIndex == VK_QUEUE_FAMILY_IGNORED) &&
byRegion;
}
SkASSERT(!fActiveRenderPass || isValidSubpassBarrier);
#endif
if (barrierType == kBufferMemory_BarrierType) {
const VkBufferMemoryBarrier* barrierPtr = static_cast<VkBufferMemoryBarrier*>(barrier);
fBufferBarriers.push_back(*barrierPtr);
} else {
SkASSERT(barrierType == kImageMemory_BarrierType);
const VkImageMemoryBarrier* barrierPtr = static_cast<VkImageMemoryBarrier*>(barrier);
// We need to check if we are adding a pipeline barrier that covers part of the same
// subresource range as a barrier that is already in current batch. If it does, then we must
// submit the first batch because the vulkan spec does not define a specific ordering for
// barriers submitted in the same batch.
// TODO: Look if we can gain anything by merging barriers together instead of submitting
// the old ones.
for (int i = 0; i < fImageBarriers.size(); ++i) {
VkImageMemoryBarrier& currentBarrier = fImageBarriers[i];
if (barrierPtr->image == currentBarrier.image) {
const VkImageSubresourceRange newRange = barrierPtr->subresourceRange;
const VkImageSubresourceRange oldRange = currentBarrier.subresourceRange;
SkASSERT(newRange.aspectMask == oldRange.aspectMask);
SkASSERT(newRange.baseArrayLayer == oldRange.baseArrayLayer);
SkASSERT(newRange.layerCount == oldRange.layerCount);
uint32_t newStart = newRange.baseMipLevel;
uint32_t newEnd = newRange.baseMipLevel + newRange.levelCount - 1;
uint32_t oldStart = oldRange.baseMipLevel;
uint32_t oldEnd = oldRange.baseMipLevel + oldRange.levelCount - 1;
if (std::max(newStart, oldStart) <= std::min(newEnd, oldEnd)) {
this->submitPipelineBarriers();
break;
}
}
}
fImageBarriers.push_back(*barrierPtr);
}
fBarriersByRegion |= byRegion;
fSrcStageMask = fSrcStageMask | srcStageMask;
fDstStageMask = fDstStageMask | dstStageMask;
if (resource) {
this->trackResource(sk_ref_sp(resource));
}
if (fActiveRenderPass) {
this->submitPipelineBarriers(true);
}
}
void VulkanCommandBuffer::submitPipelineBarriers(bool forSelfDependency) {
SkASSERT(fActive);
// TODO: Do we need to handle SecondaryCommandBuffers as well?
// Currently we never submit a pipeline barrier without at least one buffer or image barrier.
if (fBufferBarriers.size() || fImageBarriers.size()) {
// For images we can have barriers inside of render passes but they require us to add more
// support in subpasses which need self dependencies to have barriers inside them. Also, we
// can never have buffer barriers inside of a render pass. For now we will just assert that
// we are not in a render pass.
SkASSERT(!fActiveRenderPass || forSelfDependency);
// TODO: Do we need to handle wrapped CommandBuffers?
// SkASSERT(!this->isWrapped());
SkASSERT(fSrcStageMask && fDstStageMask);
VkDependencyFlags dependencyFlags = fBarriersByRegion ? VK_DEPENDENCY_BY_REGION_BIT : 0;
VULKAN_CALL(fSharedContext->interface(),
CmdPipelineBarrier(fPrimaryCommandBuffer, fSrcStageMask, fDstStageMask,
dependencyFlags,
/*memoryBarrierCount=*/0, /*pMemoryBarrier=*/nullptr,
fBufferBarriers.size(), fBufferBarriers.begin(),
fImageBarriers.size(), fImageBarriers.begin()));
fBufferBarriers.clear();
fImageBarriers.clear();
fBarriersByRegion = false;
fSrcStageMask = 0;
fDstStageMask = 0;
}
SkASSERT(!fBufferBarriers.size());
SkASSERT(!fImageBarriers.size());
SkASSERT(!fBarriersByRegion);
SkASSERT(!fSrcStageMask);
SkASSERT(!fDstStageMask);
}
} // namespace skgpu::graphite