blob: 16887107fb59788644c4f9cbd4eea82bef2cffcf [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <new>
#include "SkBBoxHierarchy.h"
#include "SkPicturePlayback.h"
#include "SkPictureRecord.h"
#include "SkPictureStateTree.h"
#include "SkReadBuffer.h"
#include "SkTypeface.h"
#include "SkTSort.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#endif
template <typename T> int SafeCount(const T* obj) {
return obj ? obj->count() : 0;
}
/* Define this to spew out a debug statement whenever we skip the remainder of
a save/restore block because a clip... command returned false (empty).
*/
#define SPEW_CLIP_SKIPPINGx
SkPicturePlayback::PlaybackReplacements::ReplacementInfo*
SkPicturePlayback::PlaybackReplacements::push() {
SkDEBUGCODE(this->validate());
return fReplacements.push();
}
void SkPicturePlayback::PlaybackReplacements::freeAll() {
for (int i = 0; i < fReplacements.count(); ++i) {
SkDELETE(fReplacements[i].fBM);
}
fReplacements.reset();
}
#ifdef SK_DEBUG
void SkPicturePlayback::PlaybackReplacements::validate() const {
// Check that the ranges are monotonically increasing and non-overlapping
if (fReplacements.count() > 0) {
SkASSERT(fReplacements[0].fStart < fReplacements[0].fStop);
for (int i = 1; i < fReplacements.count(); ++i) {
SkASSERT(fReplacements[i].fStart < fReplacements[i].fStop);
SkASSERT(fReplacements[i-1].fStop < fReplacements[i].fStart);
}
}
}
#endif
SkPicturePlayback::SkPicturePlayback(const SkPictInfo& info)
: fInfo(info) {
this->init();
}
void SkPicturePlayback::initForPlayback() const {
// ensure that the paths bounds are pre-computed
if (NULL != fPathHeap.get()) {
for (int i = 0; i < fPathHeap->count(); i++) {
(*fPathHeap.get())[i].updateBoundsCache();
}
}
}
SkPicturePlayback::SkPicturePlayback(const SkPictureRecord& record,
const SkPictInfo& info,
bool deepCopyOps)
: fInfo(info) {
#ifdef SK_DEBUG_SIZE
size_t overallBytes, bitmapBytes, matricesBytes,
paintBytes, pathBytes, pictureBytes, regionBytes;
int bitmaps = record.bitmaps(&bitmapBytes);
int matrices = record.matrices(&matricesBytes);
int paints = record.paints(&paintBytes);
int paths = record.paths(&pathBytes);
int pictures = record.pictures(&pictureBytes);
int regions = record.regions(&regionBytes);
SkDebugf("picture record mem used %zd (stream %zd) ", record.size(),
record.streamlen());
if (bitmaps != 0)
SkDebugf("bitmaps size %zd (bitmaps:%d) ", bitmapBytes, bitmaps);
if (matrices != 0)
SkDebugf("matrices size %zd (matrices:%d) ", matricesBytes, matrices);
if (paints != 0)
SkDebugf("paints size %zd (paints:%d) ", paintBytes, paints);
if (paths != 0)
SkDebugf("paths size %zd (paths:%d) ", pathBytes, paths);
if (pictures != 0)
SkDebugf("pictures size %zd (pictures:%d) ", pictureBytes, pictures);
if (regions != 0)
SkDebugf("regions size %zd (regions:%d) ", regionBytes, regions);
if (record.fPointWrites != 0)
SkDebugf("points size %zd (points:%d) ", record.fPointBytes, record.fPointWrites);
if (record.fRectWrites != 0)
SkDebugf("rects size %zd (rects:%d) ", record.fRectBytes, record.fRectWrites);
if (record.fTextWrites != 0)
SkDebugf("text size %zd (text strings:%d) ", record.fTextBytes, record.fTextWrites);
SkDebugf("\n");
#endif
#ifdef SK_DEBUG_DUMP
record.dumpMatrices();
record.dumpPaints();
#endif
this->init();
fOpData = record.opData(deepCopyOps);
fBoundingHierarchy = record.fBoundingHierarchy;
fStateTree = record.fStateTree;
SkSafeRef(fBoundingHierarchy);
SkSafeRef(fStateTree);
fContentInfo.set(record.fContentInfo);
if (NULL != fBoundingHierarchy) {
fBoundingHierarchy->flushDeferredInserts();
}
// copy over the refcnt dictionary to our reader
record.fFlattenableHeap.setupPlaybacks();
fBitmaps = record.fBitmapHeap->extractBitmaps();
fPaints = record.fPaints.unflattenToArray();
fBitmapHeap.reset(SkSafeRef(record.fBitmapHeap));
fPathHeap.reset(SkSafeRef(record.pathHeap()));
this->initForPlayback();
const SkTDArray<const SkPicture* >& pictures = record.getPictureRefs();
fPictureCount = pictures.count();
if (fPictureCount > 0) {
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i] = pictures[i];
fPictureRefs[i]->ref();
}
}
#ifdef SK_DEBUG_SIZE
int overall = fPlayback->size(&overallBytes);
bitmaps = fPlayback->bitmaps(&bitmapBytes);
paints = fPlayback->paints(&paintBytes);
paths = fPlayback->paths(&pathBytes);
pictures = fPlayback->pictures(&pictureBytes);
regions = fPlayback->regions(&regionBytes);
SkDebugf("playback size %zd (objects:%d) ", overallBytes, overall);
if (bitmaps != 0)
SkDebugf("bitmaps size %zd (bitmaps:%d) ", bitmapBytes, bitmaps);
if (paints != 0)
SkDebugf("paints size %zd (paints:%d) ", paintBytes, paints);
if (paths != 0)
SkDebugf("paths size %zd (paths:%d) ", pathBytes, paths);
if (pictures != 0)
SkDebugf("pictures size %zd (pictures:%d) ", pictureBytes, pictures);
if (regions != 0)
SkDebugf("regions size %zd (regions:%d) ", regionBytes, regions);
SkDebugf("\n");
#endif
}
SkPicturePlayback::SkPicturePlayback(const SkPicturePlayback& src, SkPictCopyInfo* deepCopyInfo)
: fInfo(src.fInfo) {
this->init();
fBitmapHeap.reset(SkSafeRef(src.fBitmapHeap.get()));
fPathHeap.reset(SkSafeRef(src.fPathHeap.get()));
fOpData = SkSafeRef(src.fOpData);
fBoundingHierarchy = src.fBoundingHierarchy;
fStateTree = src.fStateTree;
fContentInfo.set(src.fContentInfo);
SkSafeRef(fBoundingHierarchy);
SkSafeRef(fStateTree);
if (deepCopyInfo) {
SkASSERT(deepCopyInfo->initialized);
int paintCount = SafeCount(src.fPaints);
if (src.fBitmaps) {
fBitmaps = SkTRefArray<SkBitmap>::Create(src.fBitmaps->begin(), src.fBitmaps->count());
}
fPaints = SkTRefArray<SkPaint>::Create(paintCount);
SkASSERT(deepCopyInfo->paintData.count() == paintCount);
SkBitmapHeap* bmHeap = deepCopyInfo->controller.getBitmapHeap();
SkTypefacePlayback* tfPlayback = deepCopyInfo->controller.getTypefacePlayback();
for (int i = 0; i < paintCount; i++) {
if (deepCopyInfo->paintData[i]) {
deepCopyInfo->paintData[i]->unflatten<SkPaint::FlatteningTraits>(
&fPaints->writableAt(i), bmHeap, tfPlayback);
} else {
// needs_deep_copy was false, so just need to assign
fPaints->writableAt(i) = src.fPaints->at(i);
}
}
} else {
fBitmaps = SkSafeRef(src.fBitmaps);
fPaints = SkSafeRef(src.fPaints);
}
fPictureCount = src.fPictureCount;
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
if (deepCopyInfo) {
fPictureRefs[i] = src.fPictureRefs[i]->clone();
} else {
fPictureRefs[i] = src.fPictureRefs[i];
fPictureRefs[i]->ref();
}
}
}
void SkPicturePlayback::init() {
fBitmaps = NULL;
fPaints = NULL;
fPictureRefs = NULL;
fPictureCount = 0;
fOpData = NULL;
fFactoryPlayback = NULL;
fBoundingHierarchy = NULL;
fStateTree = NULL;
fCachedActiveOps = NULL;
fCurOffset = 0;
fUseBBH = true;
fStart = 0;
fStop = 0;
fReplacements = NULL;
}
SkPicturePlayback::~SkPicturePlayback() {
SkSafeUnref(fOpData);
SkSafeUnref(fBitmaps);
SkSafeUnref(fPaints);
SkSafeUnref(fBoundingHierarchy);
SkSafeUnref(fStateTree);
SkDELETE(fCachedActiveOps);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->unref();
}
SkDELETE_ARRAY(fPictureRefs);
SkDELETE(fFactoryPlayback);
}
void SkPicturePlayback::dumpSize() const {
SkDebugf("--- picture size: ops=%d bitmaps=%d [%d] paints=%d [%d]\n",
fOpData->size(),
SafeCount(fBitmaps), SafeCount(fBitmaps) * sizeof(SkBitmap),
SafeCount(fPaints), SafeCount(fPaints) * sizeof(SkPaint));
SkDebugf("--- picture size: paths=%d\n",
SafeCount(fPathHeap.get()));
}
bool SkPicturePlayback::containsBitmaps() const {
if (fBitmaps && fBitmaps->count() > 0) {
return true;
}
for (int i = 0; i < fPictureCount; ++i) {
if (fPictureRefs[i]->willPlayBackBitmaps()) {
return true;
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkStream.h"
static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) {
size_t size = 4; // for 'count'
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (NULL == name || 0 == *name) {
size += SkWStream::SizeOfPackedUInt(0);
} else {
size_t len = strlen(name);
size += SkWStream::SizeOfPackedUInt(len);
size += len;
}
}
return size;
}
void SkPicturePlayback::WriteFactories(SkWStream* stream, const SkFactorySet& rec) {
int count = rec.count();
SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count);
SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get();
rec.copyToArray(array);
size_t size = compute_chunk_size(array, count);
// TODO: write_tag_size should really take a size_t
SkPicture::WriteTagSize(stream, SK_PICT_FACTORY_TAG, (uint32_t) size);
SkDEBUGCODE(size_t start = stream->bytesWritten());
stream->write32(count);
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
// SkDebugf("---- write factories [%d] %p <%s>\n", i, array[i], name);
if (NULL == name || 0 == *name) {
stream->writePackedUInt(0);
} else {
size_t len = strlen(name);
stream->writePackedUInt(len);
stream->write(name, len);
}
}
SkASSERT(size == (stream->bytesWritten() - start));
}
void SkPicturePlayback::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec) {
int count = rec.count();
SkPicture::WriteTagSize(stream, SK_PICT_TYPEFACE_TAG, count);
SkAutoSTMalloc<16, SkTypeface*> storage(count);
SkTypeface** array = (SkTypeface**)storage.get();
rec.copyToArray((SkRefCnt**)array);
for (int i = 0; i < count; i++) {
array[i]->serialize(stream);
}
}
void SkPicturePlayback::flattenToBuffer(SkWriteBuffer& buffer) const {
int i, n;
if ((n = SafeCount(fBitmaps)) > 0) {
SkPicture::WriteTagSize(buffer, SK_PICT_BITMAP_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writeBitmap((*fBitmaps)[i]);
}
}
if ((n = SafeCount(fPaints)) > 0) {
SkPicture::WriteTagSize(buffer, SK_PICT_PAINT_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writePaint((*fPaints)[i]);
}
}
if ((n = SafeCount(fPathHeap.get())) > 0) {
SkPicture::WriteTagSize(buffer, SK_PICT_PATH_BUFFER_TAG, n);
fPathHeap->flatten(buffer);
}
}
void SkPicturePlayback::serialize(SkWStream* stream,
SkPicture::EncodeBitmap encoder) const {
SkPicture::WriteTagSize(stream, SK_PICT_READER_TAG, fOpData->size());
stream->write(fOpData->bytes(), fOpData->size());
if (fPictureCount > 0) {
SkPicture::WriteTagSize(stream, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->serialize(stream, encoder);
}
}
// Write some of our data into a writebuffer, and then serialize that
// into our stream
{
SkRefCntSet typefaceSet;
SkFactorySet factSet;
SkWriteBuffer buffer(SkWriteBuffer::kCrossProcess_Flag);
buffer.setTypefaceRecorder(&typefaceSet);
buffer.setFactoryRecorder(&factSet);
buffer.setBitmapEncoder(encoder);
this->flattenToBuffer(buffer);
// We have to write these two sets into the stream *before* we write
// the buffer, since parsing that buffer will require that we already
// have these sets available to use.
WriteFactories(stream, factSet);
WriteTypefaces(stream, typefaceSet);
SkPicture::WriteTagSize(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten());
buffer.writeToStream(stream);
}
stream->write32(SK_PICT_EOF_TAG);
}
void SkPicturePlayback::flatten(SkWriteBuffer& buffer) const {
SkPicture::WriteTagSize(buffer, SK_PICT_READER_TAG, fOpData->size());
buffer.writeByteArray(fOpData->bytes(), fOpData->size());
if (fPictureCount > 0) {
SkPicture::WriteTagSize(buffer, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->flatten(buffer);
}
}
// Write this picture playback's data into a writebuffer
this->flattenToBuffer(buffer);
buffer.write32(SK_PICT_EOF_TAG);
}
///////////////////////////////////////////////////////////////////////////////
/**
* Return the corresponding SkReadBuffer flags, given a set of
* SkPictInfo flags.
*/
static uint32_t pictInfoFlagsToReadBufferFlags(uint32_t pictInfoFlags) {
static const struct {
uint32_t fSrc;
uint32_t fDst;
} gSD[] = {
{ SkPictInfo::kCrossProcess_Flag, SkReadBuffer::kCrossProcess_Flag },
{ SkPictInfo::kScalarIsFloat_Flag, SkReadBuffer::kScalarIsFloat_Flag },
{ SkPictInfo::kPtrIs64Bit_Flag, SkReadBuffer::kPtrIs64Bit_Flag },
};
uint32_t rbMask = 0;
for (size_t i = 0; i < SK_ARRAY_COUNT(gSD); ++i) {
if (pictInfoFlags & gSD[i].fSrc) {
rbMask |= gSD[i].fDst;
}
}
return rbMask;
}
bool SkPicturePlayback::parseStreamTag(SkStream* stream,
uint32_t tag,
uint32_t size,
SkPicture::InstallPixelRefProc proc) {
/*
* By the time we encounter BUFFER_SIZE_TAG, we need to have already seen
* its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required
* but if they are present, they need to have been seen before the buffer.
*
* We assert that if/when we see either of these, that we have not yet seen
* the buffer tag, because if we have, then its too-late to deal with the
* factories or typefaces.
*/
SkDEBUGCODE(bool haveBuffer = false;)
switch (tag) {
case SK_PICT_READER_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
SkASSERT(NULL == fOpData);
fOpData = SkData::NewFromMalloc(storage.detach(), size);
} break;
case SK_PICT_FACTORY_TAG: {
SkASSERT(!haveBuffer);
// Remove this code when v21 and below are no longer supported. At the
// same time add a new 'count' variable and use it rather then reusing 'size'.
#ifndef DISABLE_V21_COMPATIBILITY_CODE
if (fInfo.fVersion >= 22) {
// in v22 this tag's size represents the size of the chunk in bytes
// and the number of factory strings is written out separately
#endif
size = stream->readU32();
#ifndef DISABLE_V21_COMPATIBILITY_CODE
}
#endif
fFactoryPlayback = SkNEW_ARGS(SkFactoryPlayback, (size));
for (size_t i = 0; i < size; i++) {
SkString str;
const size_t len = stream->readPackedUInt();
str.resize(len);
if (stream->read(str.writable_str(), len) != len) {
return false;
}
fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str());
}
} break;
case SK_PICT_TYPEFACE_TAG: {
SkASSERT(!haveBuffer);
const int count = SkToInt(size);
fTFPlayback.setCount(count);
for (int i = 0; i < count; i++) {
SkAutoTUnref<SkTypeface> tf(SkTypeface::Deserialize(stream));
if (!tf.get()) { // failed to deserialize
// fTFPlayback asserts it never has a null, so we plop in
// the default here.
tf.reset(SkTypeface::RefDefault());
}
fTFPlayback.set(i, tf);
}
} break;
case SK_PICT_PICTURE_TAG: {
fPictureCount = size;
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
bool success = true;
int i = 0;
for ( ; i < fPictureCount; i++) {
fPictureRefs[i] = SkPicture::CreateFromStream(stream, proc);
if (NULL == fPictureRefs[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the pictures that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
fPictureRefs[j]->unref();
}
// Delete the array
SkDELETE_ARRAY(fPictureRefs);
fPictureCount = 0;
return false;
}
} break;
case SK_PICT_BUFFER_SIZE_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
SkReadBuffer buffer(storage.get(), size);
buffer.setFlags(pictInfoFlagsToReadBufferFlags(fInfo.fFlags));
buffer.setVersion(fInfo.fVersion);
fFactoryPlayback->setupBuffer(buffer);
fTFPlayback.setupBuffer(buffer);
buffer.setBitmapDecoder(proc);
while (!buffer.eof()) {
tag = buffer.readUInt();
size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false;
}
}
SkDEBUGCODE(haveBuffer = true;)
} break;
}
return true; // success
}
bool SkPicturePlayback::parseBufferTag(SkReadBuffer& buffer,
uint32_t tag, uint32_t size) {
switch (tag) {
case SK_PICT_BITMAP_BUFFER_TAG: {
const int count = SkToInt(size);
fBitmaps = SkTRefArray<SkBitmap>::Create(size);
for (int i = 0; i < count; ++i) {
SkBitmap* bm = &fBitmaps->writableAt(i);
buffer.readBitmap(bm);
bm->setImmutable();
}
} break;
case SK_PICT_PAINT_BUFFER_TAG: {
const int count = SkToInt(size);
fPaints = SkTRefArray<SkPaint>::Create(size);
for (int i = 0; i < count; ++i) {
buffer.readPaint(&fPaints->writableAt(i));
}
} break;
case SK_PICT_PATH_BUFFER_TAG:
if (size > 0) {
fPathHeap.reset(SkNEW_ARGS(SkPathHeap, (buffer)));
}
break;
case SK_PICT_READER_TAG: {
SkAutoMalloc storage(size);
if (!buffer.readByteArray(storage.get(), size) ||
!buffer.validate(NULL == fOpData)) {
return false;
}
SkASSERT(NULL == fOpData);
fOpData = SkData::NewFromMalloc(storage.detach(), size);
} break;
case SK_PICT_PICTURE_TAG: {
if (!buffer.validate((0 == fPictureCount) && (NULL == fPictureRefs))) {
return false;
}
fPictureCount = size;
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
bool success = true;
int i = 0;
for ( ; i < fPictureCount; i++) {
fPictureRefs[i] = SkPicture::CreateFromBuffer(buffer);
if (NULL == fPictureRefs[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the pictures that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
fPictureRefs[j]->unref();
}
// Delete the array
SkDELETE_ARRAY(fPictureRefs);
fPictureCount = 0;
return false;
}
} break;
default:
// The tag was invalid.
return false;
}
return true; // success
}
SkPicturePlayback* SkPicturePlayback::CreateFromStream(SkStream* stream,
const SkPictInfo& info,
SkPicture::InstallPixelRefProc proc) {
SkAutoTDelete<SkPicturePlayback> playback(SkNEW_ARGS(SkPicturePlayback, (info)));
if (!playback->parseStream(stream, proc)) {
return NULL;
}
return playback.detach();
}
SkPicturePlayback* SkPicturePlayback::CreateFromBuffer(SkReadBuffer& buffer,
const SkPictInfo& info) {
SkAutoTDelete<SkPicturePlayback> playback(SkNEW_ARGS(SkPicturePlayback, (info)));
buffer.setVersion(info.fVersion);
if (!playback->parseBuffer(buffer)) {
return NULL;
}
return playback.detach();
}
bool SkPicturePlayback::parseStream(SkStream* stream,
SkPicture::InstallPixelRefProc proc) {
for (;;) {
uint32_t tag = stream->readU32();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = stream->readU32();
if (!this->parseStreamTag(stream, tag, size, proc)) {
return false; // we're invalid
}
}
return true;
}
bool SkPicturePlayback::parseBuffer(SkReadBuffer& buffer) {
for (;;) {
uint32_t tag = buffer.readUInt();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false; // we're invalid
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef SPEW_CLIP_SKIPPING
struct SkipClipRec {
int fCount;
size_t fSize;
SkipClipRec() {
fCount = 0;
fSize = 0;
}
void recordSkip(size_t bytes) {
fCount += 1;
fSize += bytes;
}
};
#endif
#ifdef SK_DEVELOPER
bool SkPicturePlayback::preDraw(int opIndex, int type) {
return false;
}
void SkPicturePlayback::postDraw(int opIndex) {
}
#endif
/*
* Read the next op code and chunk size from 'reader'. The returned size
* is the entire size of the chunk (including the opcode). Thus, the
* offset just prior to calling read_op_and_size + 'size' is the offset
* to the next chunk's op code. This also means that the size of a chunk
* with no arguments (just an opcode) will be 4.
*/
static DrawType read_op_and_size(SkReader32* reader, uint32_t* size) {
uint32_t temp = reader->readInt();
uint32_t op;
if (((uint8_t) temp) == temp) {
// old skp file - no size information
op = temp;
*size = 0;
} else {
UNPACK_8_24(temp, op, *size);
if (MASK_24 == *size) {
*size = reader->readInt();
}
}
return (DrawType) op;
}
uint32_t SkPicturePlayback::CachedOperationList::offset(int index) const {
SkASSERT(index < fOps.count());
return ((SkPictureStateTree::Draw*)fOps[index])->fOffset;
}
const SkMatrix& SkPicturePlayback::CachedOperationList::matrix(int index) const {
SkASSERT(index < fOps.count());
return *((SkPictureStateTree::Draw*)fOps[index])->fMatrix;
}
const SkPicture::OperationList& SkPicturePlayback::getActiveOps(const SkIRect& query) {
if (NULL == fStateTree || NULL == fBoundingHierarchy) {
return SkPicture::OperationList::InvalidList();
}
if (NULL == fCachedActiveOps) {
fCachedActiveOps = SkNEW(CachedOperationList);
}
if (query == fCachedActiveOps->fCacheQueryRect) {
return *fCachedActiveOps;
}
fCachedActiveOps->fOps.rewind();
fBoundingHierarchy->search(query, &(fCachedActiveOps->fOps));
if (0 != fCachedActiveOps->fOps.count()) {
SkTQSort<SkPictureStateTree::Draw>(
reinterpret_cast<SkPictureStateTree::Draw**>(fCachedActiveOps->fOps.begin()),
reinterpret_cast<SkPictureStateTree::Draw**>(fCachedActiveOps->fOps.end()-1));
}
fCachedActiveOps->fCacheQueryRect = query;
return *fCachedActiveOps;
}
class SkAutoResetOpID {
public:
SkAutoResetOpID(SkPicturePlayback* playback) : fPlayback(playback) { }
~SkAutoResetOpID() {
if (NULL != fPlayback) {
fPlayback->resetOpID();
}
}
private:
SkPicturePlayback* fPlayback;
};
// TODO: Replace with hash or pass in "lastLookedUp" hint
SkPicturePlayback::PlaybackReplacements::ReplacementInfo*
SkPicturePlayback::PlaybackReplacements::lookupByStart(size_t start) {
SkDEBUGCODE(this->validate());
for (int i = 0; i < fReplacements.count(); ++i) {
if (start == fReplacements[i].fStart) {
return &fReplacements[i];
} else if (start < fReplacements[i].fStart) {
return NULL; // the ranges are monotonically increasing and non-overlapping
}
}
return NULL;
}
void SkPicturePlayback::draw(SkCanvas& canvas, SkDrawPictureCallback* callback) {
SkAutoResetOpID aroi(this);
SkASSERT(0 == fCurOffset);
#ifdef ENABLE_TIME_DRAW
SkAutoTime at("SkPicture::draw", 50);
#endif
#ifdef SPEW_CLIP_SKIPPING
SkipClipRec skipRect, skipRRect, skipRegion, skipPath, skipCull;
int opCount = 0;
#endif
#ifdef SK_BUILD_FOR_ANDROID
SkAutoMutexAcquire autoMutex(fDrawMutex);
#endif
// kDrawComplete will be the signal that we have reached the end of
// the command stream
static const uint32_t kDrawComplete = SK_MaxU32;
SkReader32 reader(fOpData->bytes(), fOpData->size());
TextContainer text;
const SkTDArray<void*>* activeOps = NULL;
// When draw limits are enabled (i.e., 0 != fStart || 0 != fStop) the state
// tree isn't used to pick and choose the draw operations
if (0 == fStart && 0 == fStop) {
if (fUseBBH && NULL != fStateTree && NULL != fBoundingHierarchy) {
SkRect clipBounds;
if (canvas.getClipBounds(&clipBounds)) {
SkIRect query;
clipBounds.roundOut(&query);
const SkPicture::OperationList& activeOpsList = this->getActiveOps(query);
if (activeOpsList.valid()) {
if (0 == activeOpsList.numOps()) {
return; // nothing to draw
}
// Since the opList is valid we know it is our derived class
activeOps = &((const CachedOperationList&)activeOpsList).fOps;
}
}
}
}
SkPictureStateTree::Iterator it = (NULL == activeOps) ?
SkPictureStateTree::Iterator() :
fStateTree->getIterator(*activeOps, &canvas);
if (0 != fStart || 0 != fStop) {
reader.setOffset(fStart);
uint32_t size;
SkDEBUGCODE(DrawType op =) read_op_and_size(&reader, &size);
SkASSERT(SAVE_LAYER == op);
reader.setOffset(fStart+size);
}
if (it.isValid()) {
uint32_t skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
return;
}
reader.setOffset(skipTo);
}
// Record this, so we can concat w/ it if we encounter a setMatrix()
SkMatrix initialMatrix = canvas.getTotalMatrix();
SkAutoCanvasRestore acr(&canvas, false);
#ifdef SK_BUILD_FOR_ANDROID
fAbortCurrentPlayback = false;
#endif
#ifdef SK_DEVELOPER
int opIndex = -1;
#endif
while (!reader.eof()) {
if (callback && callback->abortDrawing()) {
return;
}
#ifdef SK_BUILD_FOR_ANDROID
if (fAbortCurrentPlayback) {
return;
}
#endif
if (0 != fStart || 0 != fStop) {
size_t offset = reader.offset() ;
if (offset >= fStop) {
uint32_t size;
SkDEBUGCODE(DrawType op =) read_op_and_size(&reader, &size);
SkASSERT(RESTORE == op);
return;
}
}
if (NULL != fReplacements) {
// Potentially replace a block of operations with a single drawBitmap call
SkPicturePlayback::PlaybackReplacements::ReplacementInfo* temp =
fReplacements->lookupByStart(reader.offset());
if (NULL != temp) {
SkASSERT(NULL != temp->fBM);
SkASSERT(NULL != temp->fPaint);
canvas.save();
canvas.setMatrix(initialMatrix);
canvas.drawBitmap(*temp->fBM, temp->fPos.fX, temp->fPos.fY, temp->fPaint);
canvas.restore();
if (it.isValid()) {
// This save is needed since the BBH will automatically issue
// a restore to balanced the saveLayer we're skipping
canvas.save();
// At this point we know that the PictureStateTree was aiming
// for some draw op within temp's saveLayer (although potentially
// in a separate saveLayer nested inside it).
// We need to skip all the operations inside temp's range
// along with all the associated state changes but update
// the state tree to the first operation outside temp's range.
uint32_t skipTo;
do {
skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
break;
}
if (skipTo <= temp->fStop) {
reader.setOffset(skipTo);
uint32_t size;
DrawType op = read_op_and_size(&reader, &size);
// Since we are relying on the normal SkPictureStateTree
// playback we need to convert any nested saveLayer calls
// it may issue into saves (so that all its internal
// restores will be balanced).
if (SAVE_LAYER == op) {
canvas.save();
}
}
} while (skipTo <= temp->fStop);
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
} else {
reader.setOffset(temp->fStop);
uint32_t size;
SkDEBUGCODE(DrawType op =) read_op_and_size(&reader, &size);
SkASSERT(RESTORE == op);
}
continue;
}
}
#ifdef SPEW_CLIP_SKIPPING
opCount++;
#endif
fCurOffset = reader.offset();
uint32_t size;
DrawType op = read_op_and_size(&reader, &size);
size_t skipTo = 0;
if (NOOP == op) {
// NOOPs are to be ignored - do not propagate them any further
skipTo = fCurOffset + size;
#ifdef SK_DEVELOPER
} else {
opIndex++;
if (this->preDraw(opIndex, op)) {
skipTo = fCurOffset + size;
}
#endif
}
if (0 != skipTo) {
if (it.isValid()) {
// If using a bounding box hierarchy, advance the state tree
// iterator until at or after skipTo
uint32_t adjustedSkipTo;
do {
adjustedSkipTo = it.nextDraw();
} while (adjustedSkipTo < skipTo);
skipTo = adjustedSkipTo;
}
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
continue;
}
switch (op) {
case CLIP_PATH: {
const SkPath& path = getPath(reader);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || \
offsetToRestore >= reader.offset());
canvas.clipPath(path, regionOp, doAA);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipPath.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_REGION: {
SkRegion region;
this->getRegion(reader, &region);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || \
offsetToRestore >= reader.offset());
canvas.clipRegion(region, regionOp);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRegion.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_RECT: {
const SkRect& rect = reader.skipT<SkRect>();
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || \
offsetToRestore >= reader.offset());
canvas.clipRect(rect, regionOp, doAA);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRect.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case CLIP_RRECT: {
SkRRect rrect;
reader.readRRect(&rrect);
uint32_t packed = reader.readInt();
SkRegion::Op regionOp = ClipParams_unpackRegionOp(packed);
bool doAA = ClipParams_unpackDoAA(packed);
size_t offsetToRestore = reader.readInt();
SkASSERT(!offsetToRestore || offsetToRestore >= reader.offset());
canvas.clipRRect(rrect, regionOp, doAA);
if (canvas.isClipEmpty() && offsetToRestore) {
#ifdef SPEW_CLIP_SKIPPING
skipRRect.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
}
} break;
case PUSH_CULL: {
const SkRect& cullRect = reader.skipT<SkRect>();
size_t offsetToRestore = reader.readInt();
if (offsetToRestore && canvas.quickReject(cullRect)) {
#ifdef SPEW_CLIP_SKIPPING
skipCull.recordSkip(offsetToRestore - reader.offset());
#endif
reader.setOffset(offsetToRestore);
} else {
canvas.pushCull(cullRect);
}
} break;
case POP_CULL:
canvas.popCull();
break;
case CONCAT: {
SkMatrix matrix;
this->getMatrix(reader, &matrix);
canvas.concat(matrix);
break;
}
case DRAW_BITMAP: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
const SkPoint& loc = reader.skipT<SkPoint>();
canvas.drawBitmap(bitmap, loc.fX, loc.fY, paint);
} break;
case DRAW_BITMAP_RECT_TO_RECT: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
const SkRect* src = this->getRectPtr(reader); // may be null
const SkRect& dst = reader.skipT<SkRect>(); // required
SkCanvas::DrawBitmapRectFlags flags;
flags = (SkCanvas::DrawBitmapRectFlags) reader.readInt();
canvas.drawBitmapRectToRect(bitmap, src, dst, paint, flags);
} break;
case DRAW_BITMAP_MATRIX: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
SkMatrix matrix;
this->getMatrix(reader, &matrix);
canvas.drawBitmapMatrix(bitmap, matrix, paint);
} break;
case DRAW_BITMAP_NINE: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
const SkIRect& src = reader.skipT<SkIRect>();
const SkRect& dst = reader.skipT<SkRect>();
canvas.drawBitmapNine(bitmap, src, dst, paint);
} break;
case DRAW_CLEAR:
canvas.clear(reader.readInt());
break;
case DRAW_DATA: {
size_t length = reader.readInt();
canvas.drawData(reader.skip(length), length);
// skip handles padding the read out to a multiple of 4
} break;
case DRAW_DRRECT: {
const SkPaint& paint = *this->getPaint(reader);
SkRRect outer, inner;
reader.readRRect(&outer);
reader.readRRect(&inner);
canvas.drawDRRect(outer, inner, paint);
} break;
case BEGIN_COMMENT_GROUP: {
const char* desc = reader.readString();
canvas.beginCommentGroup(desc);
} break;
case COMMENT: {
const char* kywd = reader.readString();
const char* value = reader.readString();
canvas.addComment(kywd, value);
} break;
case END_COMMENT_GROUP: {
canvas.endCommentGroup();
} break;
case DRAW_OVAL: {
const SkPaint& paint = *this->getPaint(reader);
canvas.drawOval(reader.skipT<SkRect>(), paint);
} break;
case DRAW_PAINT:
canvas.drawPaint(*this->getPaint(reader));
break;
case DRAW_PATH: {
const SkPaint& paint = *this->getPaint(reader);
canvas.drawPath(getPath(reader), paint);
} break;
case DRAW_PICTURE:
canvas.drawPicture(this->getPicture(reader));
break;
case DRAW_POINTS: {
const SkPaint& paint = *this->getPaint(reader);
SkCanvas::PointMode mode = (SkCanvas::PointMode)reader.readInt();
size_t count = reader.readInt();
const SkPoint* pts = (const SkPoint*)reader.skip(sizeof(SkPoint) * count);
canvas.drawPoints(mode, count, pts, paint);
} break;
case DRAW_POS_TEXT: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t points = reader.readInt();
const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint));
canvas.drawPosText(text.text(), text.length(), pos, paint);
} break;
case DRAW_POS_TEXT_TOP_BOTTOM: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t points = reader.readInt();
const SkPoint* pos = (const SkPoint*)reader.skip(points * sizeof(SkPoint));
const SkScalar top = reader.readScalar();
const SkScalar bottom = reader.readScalar();
if (!canvas.quickRejectY(top, bottom)) {
canvas.drawPosText(text.text(), text.length(), pos, paint);
}
} break;
case DRAW_POS_TEXT_H: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t xCount = reader.readInt();
const SkScalar constY = reader.readScalar();
const SkScalar* xpos = (const SkScalar*)reader.skip(xCount * sizeof(SkScalar));
canvas.drawPosTextH(text.text(), text.length(), xpos, constY,
paint);
} break;
case DRAW_POS_TEXT_H_TOP_BOTTOM: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
size_t xCount = reader.readInt();
const SkScalar* xpos = (const SkScalar*)reader.skip((3 + xCount) * sizeof(SkScalar));
const SkScalar top = *xpos++;
const SkScalar bottom = *xpos++;
const SkScalar constY = *xpos++;
if (!canvas.quickRejectY(top, bottom)) {
canvas.drawPosTextH(text.text(), text.length(), xpos,
constY, paint);
}
} break;
case DRAW_RECT: {
const SkPaint& paint = *this->getPaint(reader);
canvas.drawRect(reader.skipT<SkRect>(), paint);
} break;
case DRAW_RRECT: {
const SkPaint& paint = *this->getPaint(reader);
SkRRect rrect;
reader.readRRect(&rrect);
canvas.drawRRect(rrect, paint);
} break;
case DRAW_SPRITE: {
const SkPaint* paint = this->getPaint(reader);
const SkBitmap& bitmap = this->getBitmap(reader);
int left = reader.readInt();
int top = reader.readInt();
canvas.drawSprite(bitmap, left, top, paint);
} break;
case DRAW_TEXT: {
const SkPaint& paint = *this->getPaint(reader);
this->getText(reader, &text);
SkScalar x = reader.readScalar();
SkScalar y = reader.readScalar();
canvas.drawText(text.text(), text.length(), x, y, paint);
} break;
case DRAW_TEXT_TOP_BOTTOM: {
const SkPaint& paint = *this->getPaint(reader);
this->getText(reader, &text);
const SkScalar* ptr = (const SkScalar*)reader.skip(4 * sizeof(SkScalar));
// ptr[0] == x
// ptr[1] == y
// ptr[2] == top
// ptr[3] == bottom
if (!canvas.quickRejectY(ptr[2], ptr[3])) {
canvas.drawText(text.text(), text.length(), ptr[0], ptr[1],
paint);
}
} break;
case DRAW_TEXT_ON_PATH: {
const SkPaint& paint = *this->getPaint(reader);
getText(reader, &text);
const SkPath& path = this->getPath(reader);
SkMatrix matrix;
this->getMatrix(reader, &matrix);
canvas.drawTextOnPath(text.text(), text.length(), path, &matrix, paint);
} break;
case DRAW_VERTICES: {
SkAutoTUnref<SkXfermode> xfer;
const SkPaint& paint = *this->getPaint(reader);
DrawVertexFlags flags = (DrawVertexFlags)reader.readInt();
SkCanvas::VertexMode vmode = (SkCanvas::VertexMode)reader.readInt();
int vCount = reader.readInt();
const SkPoint* verts = (const SkPoint*)reader.skip(
vCount * sizeof(SkPoint));
const SkPoint* texs = NULL;
const SkColor* colors = NULL;
const uint16_t* indices = NULL;
int iCount = 0;
if (flags & DRAW_VERTICES_HAS_TEXS) {
texs = (const SkPoint*)reader.skip(
vCount * sizeof(SkPoint));
}
if (flags & DRAW_VERTICES_HAS_COLORS) {
colors = (const SkColor*)reader.skip(
vCount * sizeof(SkColor));
}
if (flags & DRAW_VERTICES_HAS_INDICES) {
iCount = reader.readInt();
indices = (const uint16_t*)reader.skip(
iCount * sizeof(uint16_t));
}
if (flags & DRAW_VERTICES_HAS_XFER) {
int mode = reader.readInt();
if (mode < 0 || mode > SkXfermode::kLastMode) {
mode = SkXfermode::kModulate_Mode;
}
xfer.reset(SkXfermode::Create((SkXfermode::Mode)mode));
}
canvas.drawVertices(vmode, vCount, verts, texs, colors, xfer,
indices, iCount, paint);
} break;
case RESTORE:
canvas.restore();
break;
case ROTATE:
canvas.rotate(reader.readScalar());
break;
case SAVE:
canvas.save((SkCanvas::SaveFlags) reader.readInt());
break;
case SAVE_LAYER: {
const SkRect* boundsPtr = this->getRectPtr(reader);
const SkPaint* paint = this->getPaint(reader);
canvas.saveLayer(boundsPtr, paint, (SkCanvas::SaveFlags) reader.readInt());
} break;
case SCALE: {
SkScalar sx = reader.readScalar();
SkScalar sy = reader.readScalar();
canvas.scale(sx, sy);
} break;
case SET_MATRIX: {
SkMatrix matrix;
this->getMatrix(reader, &matrix);
matrix.postConcat(initialMatrix);
canvas.setMatrix(matrix);
} break;
case SKEW: {
SkScalar sx = reader.readScalar();
SkScalar sy = reader.readScalar();
canvas.skew(sx, sy);
} break;
case TRANSLATE: {
SkScalar dx = reader.readScalar();
SkScalar dy = reader.readScalar();
canvas.translate(dx, dy);
} break;
default:
SkASSERT(0);
}
#ifdef SK_DEVELOPER
this->postDraw(opIndex);
#endif
if (it.isValid()) {
uint32_t skipTo = it.nextDraw();
if (kDrawComplete == skipTo) {
break;
}
reader.setOffset(skipTo);
}
}
#ifdef SPEW_CLIP_SKIPPING
{
size_t size = skipRect.fSize + skipRRect.fSize + skipPath.fSize + skipRegion.fSize +
skipCull.fSize;
SkDebugf("--- Clip skips %d%% rect:%d rrect:%d path:%d rgn:%d cull:%d\n",
size * 100 / reader.offset(), skipRect.fCount, skipRRect.fCount,
skipPath.fCount, skipRegion.fCount, skipCull.fCount);
SkDebugf("--- Total ops: %d\n", opCount);
}
#endif
// this->dumpSize();
}
#if SK_SUPPORT_GPU
bool SkPicturePlayback::suitableForGpuRasterization(GrContext* context, const char **reason,
int sampleCount) const {
// TODO: the heuristic used here needs to be refined
static const int kNumPaintWithPathEffectUsesTol = 1;
static const int kNumAAConcavePaths = 5;
SkASSERT(fContentInfo.numAAHairlineConcavePaths() <= fContentInfo.numAAConcavePaths());
int numNonDashedPathEffects = fContentInfo.numPaintWithPathEffectUses() -
fContentInfo.numFastPathDashEffects();
bool suitableForDash = (0 == fContentInfo.numPaintWithPathEffectUses()) ||
(numNonDashedPathEffects < kNumPaintWithPathEffectUsesTol
&& 0 == sampleCount);
bool ret = suitableForDash &&
(fContentInfo.numAAConcavePaths() - fContentInfo.numAAHairlineConcavePaths())
< kNumAAConcavePaths;
if (!ret && NULL != reason) {
if (!suitableForDash) {
if (0 != sampleCount) {
*reason = "Can't use multisample on dash effect.";
} else {
*reason = "Too many non dashed path effects.";
}
} else if ((fContentInfo.numAAConcavePaths() - fContentInfo.numAAHairlineConcavePaths())
>= kNumAAConcavePaths)
*reason = "Too many anti-aliased concave paths.";
else
*reason = "Unknown reason for GPU unsuitability.";
}
return ret;
}
bool SkPicturePlayback::suitableForGpuRasterization(GrContext* context, const char **reason,
GrPixelConfig config, SkScalar dpi) const {
if (context != NULL) {
return this->suitableForGpuRasterization(context, reason,
context->getRecommendedSampleCount(config, dpi));
} else {
return this->suitableForGpuRasterization(NULL, reason);
}
}
#endif
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG_SIZE
int SkPicturePlayback::size(size_t* sizePtr) {
int objects = bitmaps(sizePtr);
objects += paints(sizePtr);
objects += paths(sizePtr);
objects += pictures(sizePtr);
objects += regions(sizePtr);
*sizePtr = fOpData.size();
return objects;
}
int SkPicturePlayback::bitmaps(size_t* size) {
size_t result = 0;
for (int index = 0; index < fBitmapCount; index++) {
// const SkBitmap& bitmap = fBitmaps[index];
result += sizeof(SkBitmap); // bitmap->size();
}
*size = result;
return fBitmapCount;
}
int SkPicturePlayback::paints(size_t* size) {
size_t result = 0;
for (int index = 0; index < fPaintCount; index++) {
// const SkPaint& paint = fPaints[index];
result += sizeof(SkPaint); // paint->size();
}
*size = result;
return fPaintCount;
}
int SkPicturePlayback::paths(size_t* size) {
size_t result = 0;
for (int index = 0; index < fPathCount; index++) {
const SkPath& path = fPaths[index];
result += path.flatten(NULL);
}
*size = result;
return fPathCount;
}
#endif
#ifdef SK_DEBUG_DUMP
void SkPicturePlayback::dumpBitmap(const SkBitmap& bitmap) const {
char pBuffer[DUMP_BUFFER_SIZE];
char* bufferPtr = pBuffer;
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"BitmapData bitmap%p = {", &bitmap);
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kWidth, %d}, ", bitmap.width());
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kHeight, %d}, ", bitmap.height());
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kRowBytes, %d}, ", bitmap.rowBytes());
// start here;
SkDebugf("%s{0}};\n", pBuffer);
}
void dumpMatrix(const SkMatrix& matrix) const {
SkMatrix defaultMatrix;
defaultMatrix.reset();
char pBuffer[DUMP_BUFFER_SIZE];
char* bufferPtr = pBuffer;
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"MatrixData matrix%p = {", &matrix);
SkScalar scaleX = matrix.getScaleX();
if (scaleX != defaultMatrix.getScaleX())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kScaleX, %g}, ", SkScalarToFloat(scaleX));
SkScalar scaleY = matrix.getScaleY();
if (scaleY != defaultMatrix.getScaleY())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kScaleY, %g}, ", SkScalarToFloat(scaleY));
SkScalar skewX = matrix.getSkewX();
if (skewX != defaultMatrix.getSkewX())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kSkewX, %g}, ", SkScalarToFloat(skewX));
SkScalar skewY = matrix.getSkewY();
if (skewY != defaultMatrix.getSkewY())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kSkewY, %g}, ", SkScalarToFloat(skewY));
SkScalar translateX = matrix.getTranslateX();
if (translateX != defaultMatrix.getTranslateX())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTranslateX, %g}, ", SkScalarToFloat(translateX));
SkScalar translateY = matrix.getTranslateY();
if (translateY != defaultMatrix.getTranslateY())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTranslateY, %g}, ", SkScalarToFloat(translateY));
SkScalar perspX = matrix.getPerspX();
if (perspX != defaultMatrix.getPerspX())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kPerspX, %g}, ", perspX);
SkScalar perspY = matrix.getPerspY();
if (perspY != defaultMatrix.getPerspY())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kPerspY, %g}, ", perspY);
SkDebugf("%s{0}};\n", pBuffer);
}
void dumpPaint(const SkPaint& paint) const {
SkPaint defaultPaint;
char pBuffer[DUMP_BUFFER_SIZE];
char* bufferPtr = pBuffer;
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"PaintPointers paintPtrs%p = {", &paint);
const SkTypeface* typeface = paint.getTypeface();
if (typeface != defaultPaint.getTypeface())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTypeface, %p}, ", typeface);
const SkPathEffect* pathEffect = paint.getPathEffect();
if (pathEffect != defaultPaint.getPathEffect())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kPathEffect, %p}, ", pathEffect);
const SkShader* shader = paint.getShader();
if (shader != defaultPaint.getShader())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kShader, %p}, ", shader);
const SkXfermode* xfermode = paint.getXfermode();
if (xfermode != defaultPaint.getXfermode())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kXfermode, %p}, ", xfermode);
const SkMaskFilter* maskFilter = paint.getMaskFilter();
if (maskFilter != defaultPaint.getMaskFilter())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kMaskFilter, %p}, ", maskFilter);
const SkColorFilter* colorFilter = paint.getColorFilter();
if (colorFilter != defaultPaint.getColorFilter())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kColorFilter, %p}, ", colorFilter);
const SkRasterizer* rasterizer = paint.getRasterizer();
if (rasterizer != defaultPaint.getRasterizer())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kRasterizer, %p}, ", rasterizer);
const SkDrawLooper* drawLooper = paint.getLooper();
if (drawLooper != defaultPaint.getLooper())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kDrawLooper, %p}, ", drawLooper);
SkDebugf("%s{0}};\n", pBuffer);
bufferPtr = pBuffer;
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"PaintScalars paintScalars%p = {", &paint);
SkScalar textSize = paint.getTextSize();
if (textSize != defaultPaint.getTextSize())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTextSize, %g}, ", SkScalarToFloat(textSize));
SkScalar textScaleX = paint.getTextScaleX();
if (textScaleX != defaultPaint.getTextScaleX())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTextScaleX, %g}, ", SkScalarToFloat(textScaleX));
SkScalar textSkewX = paint.getTextSkewX();
if (textSkewX != defaultPaint.getTextSkewX())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTextSkewX, %g}, ", SkScalarToFloat(textSkewX));
SkScalar strokeWidth = paint.getStrokeWidth();
if (strokeWidth != defaultPaint.getStrokeWidth())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kStrokeWidth, %g}, ", SkScalarToFloat(strokeWidth));
SkScalar strokeMiter = paint.getStrokeMiter();
if (strokeMiter != defaultPaint.getStrokeMiter())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kStrokeMiter, %g}, ", SkScalarToFloat(strokeMiter));
SkDebugf("%s{0}};\n", pBuffer);
bufferPtr = pBuffer;
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"PaintInts = paintInts%p = {", &paint);
unsigned color = paint.getColor();
if (color != defaultPaint.getColor())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kColor, 0x%x}, ", color);
unsigned flags = paint.getFlags();
if (flags != defaultPaint.getFlags())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kFlags, 0x%x}, ", flags);
int align = paint.getTextAlign();
if (align != defaultPaint.getTextAlign())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kAlign, 0x%x}, ", align);
int strokeCap = paint.getStrokeCap();
if (strokeCap != defaultPaint.getStrokeCap())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kStrokeCap, 0x%x}, ", strokeCap);
int strokeJoin = paint.getStrokeJoin();
if (strokeJoin != defaultPaint.getStrokeJoin())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kAlign, 0x%x}, ", strokeJoin);
int style = paint.getStyle();
if (style != defaultPaint.getStyle())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kStyle, 0x%x}, ", style);
int textEncoding = paint.getTextEncoding();
if (textEncoding != defaultPaint.getTextEncoding())
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"{kTextEncoding, 0x%x}, ", textEncoding);
SkDebugf("%s{0}};\n", pBuffer);
SkDebugf("PaintData paint%p = {paintPtrs%p, paintScalars%p, paintInts%p};\n",
&paint, &paint, &paint, &paint);
}
void SkPicturePlayback::dumpPath(const SkPath& path) const {
SkDebugf("path dump unimplemented\n");
}
void SkPicturePlayback::dumpPicture(const SkPicture& picture) const {
SkDebugf("picture dump unimplemented\n");
}
void SkPicturePlayback::dumpRegion(const SkRegion& region) const {
SkDebugf("region dump unimplemented\n");
}
int SkPicturePlayback::dumpDrawType(char* bufferPtr, char* buffer, DrawType drawType) {
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"k%s, ", DrawTypeToString(drawType));
}
int SkPicturePlayback::dumpInt(char* bufferPtr, char* buffer, char* name) {
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"%s:%d, ", name, getInt());
}
int SkPicturePlayback::dumpRect(char* bufferPtr, char* buffer, char* name) {
const SkRect* rect = fReader.skipRect();
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"%s:{l:%g t:%g r:%g b:%g}, ", name, SkScalarToFloat(rect.fLeft),
SkScalarToFloat(rect.fTop),
SkScalarToFloat(rect.fRight), SkScalarToFloat(rect.fBottom));
}
int SkPicturePlayback::dumpPoint(char* bufferPtr, char* buffer, char* name) {
SkPoint pt;
getPoint(&pt);
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"%s:{x:%g y:%g}, ", name, SkScalarToFloat(pt.fX),
SkScalarToFloat(pt.fY));
}
void SkPicturePlayback::dumpPointArray(char** bufferPtrPtr, char* buffer, int count) {
char* bufferPtr = *bufferPtrPtr;
const SkPoint* pts = (const SkPoint*)fReadStream.getAtPos();
fReadStream.skip(sizeof(SkPoint) * count);
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"count:%d {", count);
for (int index = 0; index < count; index++)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"{x:%g y:%g}, ", SkScalarToFloat(pts[index].fX),
SkScalarToFloat(pts[index].fY));
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"} ");
*bufferPtrPtr = bufferPtr;
}
int SkPicturePlayback::dumpPtr(char* bufferPtr, char* buffer, char* name, void* ptr) {
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"%s:%p, ", name, ptr);
}
int SkPicturePlayback::dumpRectPtr(char* bufferPtr, char* buffer, char* name) {
char result;
fReadStream.read(&result, sizeof(result));
if (result)
return dumpRect(bufferPtr, buffer, name);
else
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"%s:NULL, ", name);
}
int SkPicturePlayback::dumpScalar(char* bufferPtr, char* buffer, char* name) {
return snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - buffer),
"%s:%d, ", name, getScalar());
}
void SkPicturePlayback::dumpText(char** bufferPtrPtr, char* buffer) {
char* bufferPtr = *bufferPtrPtr;
int length = getInt();
bufferPtr += dumpDrawType(bufferPtr, buffer);
fReadStream.skipToAlign4();
char* text = (char*) fReadStream.getAtPos();
fReadStream.skip(length);
bufferPtr += dumpInt(bufferPtr, buffer, "length");
int limit = DUMP_BUFFER_SIZE - (bufferPtr - buffer) - 2;
length >>= 1;
if (limit > length)
limit = length;
if (limit > 0) {
*bufferPtr++ = '"';
for (int index = 0; index < limit; index++) {
*bufferPtr++ = *(unsigned short*) text;
text += sizeof(unsigned short);
}
*bufferPtr++ = '"';
}
*bufferPtrPtr = bufferPtr;
}
#define DUMP_DRAWTYPE(drawType) \
bufferPtr += dumpDrawType(bufferPtr, buffer, drawType)
#define DUMP_INT(name) \
bufferPtr += dumpInt(bufferPtr, buffer, #name)
#define DUMP_RECT_PTR(name) \
bufferPtr += dumpRectPtr(bufferPtr, buffer, #name)
#define DUMP_POINT(name) \
bufferPtr += dumpRect(bufferPtr, buffer, #name)
#define DUMP_RECT(name) \
bufferPtr += dumpRect(bufferPtr, buffer, #name)
#define DUMP_POINT_ARRAY(count) \
dumpPointArray(&bufferPtr, buffer, count)
#define DUMP_PTR(name, ptr) \
bufferPtr += dumpPtr(bufferPtr, buffer, #name, (void*) ptr)
#define DUMP_SCALAR(name) \
bufferPtr += dumpScalar(bufferPtr, buffer, #name)
#define DUMP_TEXT() \
dumpText(&bufferPtr, buffer)
void SkPicturePlayback::dumpStream() {
SkDebugf("RecordStream stream = {\n");
DrawType drawType;
TextContainer text;
fReadStream.rewind();
char buffer[DUMP_BUFFER_SIZE], * bufferPtr;
while (fReadStream.read(&drawType, sizeof(drawType))) {
bufferPtr = buffer;
DUMP_DRAWTYPE(drawType);
switch (drawType) {
case CLIP_PATH: {
DUMP_PTR(SkPath, &getPath());
DUMP_INT(SkRegion::Op);
DUMP_INT(offsetToRestore);
} break;
case CLIP_REGION: {
DUMP_INT(SkRegion::Op);
DUMP_INT(offsetToRestore);
} break;
case CLIP_RECT: {
DUMP_RECT(rect);
DUMP_INT(SkRegion::Op);
DUMP_INT(offsetToRestore);
} break;
case CONCAT:
break;
case DRAW_BITMAP: {
DUMP_PTR(SkPaint, getPaint());
DUMP_PTR(SkBitmap, &getBitmap());
DUMP_SCALAR(left);
DUMP_SCALAR(top);
} break;
case DRAW_PAINT:
DUMP_PTR(SkPaint, getPaint());
break;
case DRAW_PATH: {
DUMP_PTR(SkPaint, getPaint());
DUMP_PTR(SkPath, &getPath());
} break;
case DRAW_PICTURE: {
DUMP_PTR(SkPicture, &getPicture());
} break;
case DRAW_POINTS: {
DUMP_PTR(SkPaint, getPaint());
(void)getInt(); // PointMode
size_t count = getInt();
fReadStream.skipToAlign4();
DUMP_POINT_ARRAY(count);
} break;
case DRAW_POS_TEXT: {
DUMP_PTR(SkPaint, getPaint());
DUMP_TEXT();
size_t points = getInt();
fReadStream.skipToAlign4();
DUMP_POINT_ARRAY(points);
} break;
case DRAW_POS_TEXT_H: {
DUMP_PTR(SkPaint, getPaint());
DUMP_TEXT();
size_t points = getInt();
fReadStream.skipToAlign4();
DUMP_SCALAR(top);
DUMP_SCALAR(bottom);
DUMP_SCALAR(constY);
DUMP_POINT_ARRAY(points);
} break;
case DRAW_RECT: {
DUMP_PTR(SkPaint, getPaint());
DUMP_RECT(rect);
} break;
case DRAW_SPRITE: {
DUMP_PTR(SkPaint, getPaint());
DUMP_PTR(SkBitmap, &getBitmap());
DUMP_SCALAR(left);
DUMP_SCALAR(top);
} break;
case DRAW_TEXT: {
DUMP_PTR(SkPaint, getPaint());
DUMP_TEXT();
DUMP_SCALAR(x);
DUMP_SCALAR(y);
} break;
case DRAW_TEXT_ON_PATH: {
DUMP_PTR(SkPaint, getPaint());
DUMP_TEXT();
DUMP_PTR(SkPath, &getPath());
} break;
case RESTORE:
break;
case ROTATE:
DUMP_SCALAR(rotate);
break;
case SAVE:
DUMP_INT(SkCanvas::SaveFlags);
break;
case SAVE_LAYER: {
DUMP_RECT_PTR(layer);
DUMP_PTR(SkPaint, getPaint());
DUMP_INT(SkCanvas::SaveFlags);
} break;
case SCALE: {
DUMP_SCALAR(sx);
DUMP_SCALAR(sy);
} break;
case SKEW: {
DUMP_SCALAR(sx);
DUMP_SCALAR(sy);
} break;
case TRANSLATE: {
DUMP_SCALAR(dx);
DUMP_SCALAR(dy);
} break;
default:
SkASSERT(0);
}
SkDebugf("%s\n", buffer);
}
}
void SkPicturePlayback::dump() const {
char pBuffer[DUMP_BUFFER_SIZE];
char* bufferPtr = pBuffer;
int index;
if (fBitmapCount > 0)
SkDebugf("// bitmaps (%d)\n", fBitmapCount);
for (index = 0; index < fBitmapCount; index++) {
const SkBitmap& bitmap = fBitmaps[index];
dumpBitmap(bitmap);
}
if (fBitmapCount > 0)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"Bitmaps bitmaps = {");
for (index = 0; index < fBitmapCount; index++)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"bitmap%p, ", &fBitmaps[index]);
if (fBitmapCount > 0)
SkDebugf("%s0};\n", pBuffer);
if (fPaintCount > 0)
SkDebugf("// paints (%d)\n", fPaintCount);
for (index = 0; index < fPaintCount; index++) {
const SkPaint& paint = fPaints[index];
dumpPaint(paint);
}
bufferPtr = pBuffer;
if (fPaintCount > 0)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"Paints paints = {");
for (index = 0; index < fPaintCount; index++)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"paint%p, ", &fPaints[index]);
if (fPaintCount > 0)
SkDebugf("%s0};\n", pBuffer);
for (index = 0; index < fPathCount; index++) {
const SkPath& path = fPaths[index];
dumpPath(path);
}
bufferPtr = pBuffer;
if (fPathCount > 0)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"Paths paths = {");
for (index = 0; index < fPathCount; index++)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"path%p, ", &fPaths[index]);
if (fPathCount > 0)
SkDebugf("%s0};\n", pBuffer);
for (index = 0; index < fPictureCount; index++) {
dumpPicture(*fPictureRefs[index]);
}
bufferPtr = pBuffer;
if (fPictureCount > 0)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"Pictures pictures = {");
for (index = 0; index < fPictureCount; index++)
bufferPtr += snprintf(bufferPtr, DUMP_BUFFER_SIZE - (bufferPtr - pBuffer),
"picture%p, ", fPictureRefs[index]);
if (fPictureCount > 0)
SkDebugf("%s0};\n", pBuffer);
const_cast<SkPicturePlayback*>(this)->dumpStream();
}
#endif