blob: 4c4b56beace2f60b9ff858e70c76cd6c1f3b2cd7 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkImageFilter.h"
#include "SkBitmap.h"
#include "SkDevice.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkTDynamicHash.h"
#include "SkValidationUtils.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "SkGrPixelRef.h"
#include "SkGr.h"
#endif
SkImageFilter::Cache* gExternalCache;
SkImageFilter::SkImageFilter(int inputCount, SkImageFilter** inputs, const CropRect* cropRect)
: fInputCount(inputCount),
fInputs(new SkImageFilter*[inputCount]),
fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
for (int i = 0; i < inputCount; ++i) {
fInputs[i] = inputs[i];
SkSafeRef(fInputs[i]);
}
}
SkImageFilter::SkImageFilter(SkImageFilter* input, const CropRect* cropRect)
: fInputCount(1),
fInputs(new SkImageFilter*[1]),
fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
fInputs[0] = input;
SkSafeRef(fInputs[0]);
}
SkImageFilter::SkImageFilter(SkImageFilter* input1, SkImageFilter* input2, const CropRect* cropRect)
: fInputCount(2), fInputs(new SkImageFilter*[2]),
fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
fInputs[0] = input1;
fInputs[1] = input2;
SkSafeRef(fInputs[0]);
SkSafeRef(fInputs[1]);
}
SkImageFilter::~SkImageFilter() {
for (int i = 0; i < fInputCount; i++) {
SkSafeUnref(fInputs[i]);
}
delete[] fInputs;
}
SkImageFilter::SkImageFilter(int inputCount, SkReadBuffer& buffer) {
fInputCount = buffer.readInt();
if (buffer.validate((fInputCount >= 0) && ((inputCount < 0) || (fInputCount == inputCount)))) {
fInputs = new SkImageFilter*[fInputCount];
for (int i = 0; i < fInputCount; i++) {
if (buffer.readBool()) {
fInputs[i] = buffer.readImageFilter();
} else {
fInputs[i] = NULL;
}
if (!buffer.isValid()) {
fInputCount = i; // Do not use fInputs past that point in the destructor
break;
}
}
SkRect rect;
buffer.readRect(&rect);
if (buffer.isValid() && buffer.validate(SkIsValidRect(rect))) {
uint32_t flags = buffer.readUInt();
fCropRect = CropRect(rect, flags);
}
} else {
fInputCount = 0;
fInputs = NULL;
}
}
void SkImageFilter::flatten(SkWriteBuffer& buffer) const {
buffer.writeInt(fInputCount);
for (int i = 0; i < fInputCount; i++) {
SkImageFilter* input = getInput(i);
buffer.writeBool(input != NULL);
if (input != NULL) {
buffer.writeFlattenable(input);
}
}
buffer.writeRect(fCropRect.rect());
buffer.writeUInt(fCropRect.flags());
}
bool SkImageFilter::filterImage(Proxy* proxy, const SkBitmap& src,
const Context& context,
SkBitmap* result, SkIPoint* offset) const {
Cache* cache = context.cache();
SkASSERT(result);
SkASSERT(offset);
SkASSERT(cache);
if (cache->get(this, result, offset)) {
return true;
}
/*
* Give the proxy first shot at the filter. If it returns false, ask
* the filter to do it.
*/
if ((proxy && proxy->filterImage(this, src, context, result, offset)) ||
this->onFilterImage(proxy, src, context, result, offset)) {
cache->set(this, *result, *offset);
return true;
}
return false;
}
bool SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst) const {
SkASSERT(&src);
SkASSERT(dst);
if (SkImageFilter::GetExternalCache()) {
/*
* When the external cache is active, do not intersect the saveLayer
* bounds with the clip bounds. This is so that the cached result
* is always the full size of the primitive's bounds,
* regardless of the clip active on first draw.
*/
*dst = SkIRect::MakeLargest();
return true;
}
return this->onFilterBounds(src, ctm, dst);
}
void SkImageFilter::computeFastBounds(const SkRect& src, SkRect* dst) const {
if (0 == fInputCount) {
*dst = src;
return;
}
if (this->getInput(0)) {
this->getInput(0)->computeFastBounds(src, dst);
} else {
*dst = src;
}
for (int i = 1; i < fInputCount; i++) {
SkImageFilter* input = this->getInput(i);
if (input) {
SkRect bounds;
input->computeFastBounds(src, &bounds);
dst->join(bounds);
} else {
dst->join(src);
}
}
}
bool SkImageFilter::onFilterImage(Proxy*, const SkBitmap&, const Context&,
SkBitmap*, SkIPoint*) const {
return false;
}
bool SkImageFilter::canFilterImageGPU() const {
return this->asNewEffect(NULL, NULL, SkMatrix::I(), SkIRect());
}
bool SkImageFilter::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
#if SK_SUPPORT_GPU
SkBitmap input = src;
SkASSERT(fInputCount == 1);
SkIPoint srcOffset = SkIPoint::Make(0, 0);
if (this->getInput(0) &&
!this->getInput(0)->getInputResultGPU(proxy, src, ctx, &input, &srcOffset)) {
return false;
}
GrTexture* srcTexture = input.getTexture();
SkIRect bounds;
if (!this->applyCropRect(ctx, proxy, input, &srcOffset, &bounds, &input)) {
return false;
}
SkRect srcRect = SkRect::Make(bounds);
SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height());
GrContext* context = srcTexture->getContext();
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit,
desc.fWidth = bounds.width();
desc.fHeight = bounds.height();
desc.fConfig = kRGBA_8888_GrPixelConfig;
GrAutoScratchTexture dst(context, desc);
GrContext::AutoMatrix am;
am.setIdentity(context);
GrContext::AutoRenderTarget art(context, dst.texture()->asRenderTarget());
GrContext::AutoClip acs(context, dstRect);
GrEffectRef* effect;
offset->fX = bounds.left();
offset->fY = bounds.top();
bounds.offset(-srcOffset);
SkMatrix matrix(ctx.ctm());
matrix.postTranslate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
this->asNewEffect(&effect, srcTexture, matrix, bounds);
SkASSERT(effect);
SkAutoUnref effectRef(effect);
GrPaint paint;
paint.addColorEffect(effect);
context->drawRectToRect(paint, dstRect, srcRect);
SkAutoTUnref<GrTexture> resultTex(dst.detach());
WrapTexture(resultTex, bounds.width(), bounds.height(), result);
return true;
#else
return false;
#endif
}
bool SkImageFilter::applyCropRect(const Context& ctx, const SkBitmap& src,
const SkIPoint& srcOffset, SkIRect* bounds) const {
SkIRect srcBounds;
src.getBounds(&srcBounds);
srcBounds.offset(srcOffset);
SkRect cropRect;
ctx.ctm().mapRect(&cropRect, fCropRect.rect());
SkIRect cropRectI;
cropRect.roundOut(&cropRectI);
uint32_t flags = fCropRect.flags();
if (flags & CropRect::kHasLeft_CropEdge) srcBounds.fLeft = cropRectI.fLeft;
if (flags & CropRect::kHasTop_CropEdge) srcBounds.fTop = cropRectI.fTop;
if (flags & CropRect::kHasRight_CropEdge) srcBounds.fRight = cropRectI.fRight;
if (flags & CropRect::kHasBottom_CropEdge) srcBounds.fBottom = cropRectI.fBottom;
if (!srcBounds.intersect(ctx.clipBounds())) {
return false;
}
*bounds = srcBounds;
return true;
}
bool SkImageFilter::applyCropRect(const Context& ctx, Proxy* proxy, const SkBitmap& src,
SkIPoint* srcOffset, SkIRect* bounds, SkBitmap* dst) const {
SkIRect srcBounds;
src.getBounds(&srcBounds);
srcBounds.offset(*srcOffset);
SkRect cropRect;
ctx.ctm().mapRect(&cropRect, fCropRect.rect());
SkIRect cropRectI;
cropRect.roundOut(&cropRectI);
uint32_t flags = fCropRect.flags();
*bounds = srcBounds;
if (flags & CropRect::kHasLeft_CropEdge) bounds->fLeft = cropRectI.fLeft;
if (flags & CropRect::kHasTop_CropEdge) bounds->fTop = cropRectI.fTop;
if (flags & CropRect::kHasRight_CropEdge) bounds->fRight = cropRectI.fRight;
if (flags & CropRect::kHasBottom_CropEdge) bounds->fBottom = cropRectI.fBottom;
if (!bounds->intersect(ctx.clipBounds())) {
return false;
}
if (srcBounds.contains(*bounds)) {
*dst = src;
return true;
} else {
SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds->width(), bounds->height()));
if (!device) {
return false;
}
SkCanvas canvas(device);
canvas.clear(0x00000000);
canvas.drawBitmap(src, srcOffset->x() - bounds->x(), srcOffset->y() - bounds->y());
*srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
*dst = device->accessBitmap(false);
return true;
}
}
bool SkImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst) const {
if (fInputCount < 1) {
return false;
}
SkIRect bounds;
for (int i = 0; i < fInputCount; ++i) {
SkImageFilter* filter = this->getInput(i);
SkIRect rect = src;
if (filter && !filter->filterBounds(src, ctm, &rect)) {
return false;
}
if (0 == i) {
bounds = rect;
} else {
bounds.join(rect);
}
}
// don't modify dst until now, so we don't accidentally change it in the
// loop, but then return false on the next filter.
*dst = bounds;
return true;
}
bool SkImageFilter::asNewEffect(GrEffectRef**, GrTexture*, const SkMatrix&, const SkIRect&) const {
return false;
}
bool SkImageFilter::asColorFilter(SkColorFilter**) const {
return false;
}
void SkImageFilter::SetExternalCache(Cache* cache) {
SkRefCnt_SafeAssign(gExternalCache, cache);
}
SkImageFilter::Cache* SkImageFilter::GetExternalCache() {
return gExternalCache;
}
#if SK_SUPPORT_GPU
void SkImageFilter::WrapTexture(GrTexture* texture, int width, int height, SkBitmap* result) {
SkImageInfo info = SkImageInfo::MakeN32Premul(width, height);
result->setInfo(info);
result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref();
}
bool SkImageFilter::getInputResultGPU(SkImageFilter::Proxy* proxy,
const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
// Ensure that GrContext calls under filterImage and filterImageGPU below will see an identity
// matrix with no clip and that the matrix, clip, and render target set before this function was
// called are restored before we return to the caller.
GrContext* context = src.getTexture()->getContext();
GrContext::AutoWideOpenIdentityDraw awoid(context, NULL);
if (this->canFilterImageGPU()) {
return this->filterImageGPU(proxy, src, ctx, result, offset);
} else {
if (this->filterImage(proxy, src, ctx, result, offset)) {
if (!result->getTexture()) {
const SkImageInfo info = result->info();
if (kUnknown_SkColorType == info.colorType()) {
return false;
}
GrTexture* resultTex = GrLockAndRefCachedBitmapTexture(context, *result, NULL);
result->setPixelRef(new SkGrPixelRef(info, resultTex))->unref();
GrUnlockAndUnrefCachedBitmapTexture(resultTex);
}
return true;
} else {
return false;
}
}
}
#endif
static uint32_t compute_hash(const uint32_t* data, int count) {
uint32_t hash = 0;
for (int i = 0; i < count; ++i) {
uint32_t k = data[i];
k *= 0xcc9e2d51;
k = (k << 15) | (k >> 17);
k *= 0x1b873593;
hash ^= k;
hash = (hash << 13) | (hash >> 19);
hash *= 5;
hash += 0xe6546b64;
}
// hash ^= size;
hash ^= hash >> 16;
hash *= 0x85ebca6b;
hash ^= hash >> 13;
hash *= 0xc2b2ae35;
hash ^= hash >> 16;
return hash;
}
class CacheImpl : public SkImageFilter::Cache {
public:
explicit CacheImpl(int minChildren) : fMinChildren(minChildren) {}
virtual ~CacheImpl();
bool get(const SkImageFilter* key, SkBitmap* result, SkIPoint* offset) SK_OVERRIDE;
void set(const SkImageFilter* key, const SkBitmap& result, const SkIPoint& offset) SK_OVERRIDE;
void remove(const SkImageFilter* key) SK_OVERRIDE;
private:
typedef const SkImageFilter* Key;
struct Value {
Value(Key key, const SkBitmap& bitmap, const SkIPoint& offset)
: fKey(key), fBitmap(bitmap), fOffset(offset) {}
Key fKey;
SkBitmap fBitmap;
SkIPoint fOffset;
static const Key& GetKey(const Value& v) {
return v.fKey;
}
static uint32_t Hash(Key key) {
return compute_hash(reinterpret_cast<const uint32_t*>(&key), sizeof(Key) / sizeof(uint32_t));
}
};
SkTDynamicHash<Value, Key> fData;
int fMinChildren;
};
bool CacheImpl::get(const SkImageFilter* key, SkBitmap* result, SkIPoint* offset) {
Value* v = fData.find(key);
if (v) {
*result = v->fBitmap;
*offset = v->fOffset;
return true;
}
return false;
}
void CacheImpl::remove(const SkImageFilter* key) {
Value* v = fData.find(key);
if (v) {
fData.remove(key);
delete v;
}
}
void CacheImpl::set(const SkImageFilter* key, const SkBitmap& result, const SkIPoint& offset) {
if (key->getRefCnt() >= fMinChildren) {
fData.add(new Value(key, result, offset));
}
}
SkImageFilter::Cache* SkImageFilter::Cache::Create(int minChildren) {
return new CacheImpl(minChildren);
}
CacheImpl::~CacheImpl() {
SkTDynamicHash<Value, Key>::Iter iter(&fData);
while (!iter.done()) {
Value* v = &*iter;
++iter;
delete v;
}
}