| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkRRect_DEFINED |
| #define SkRRect_DEFINED |
| |
| #include "SkRect.h" |
| #include "SkPoint.h" |
| |
| class SkPath; |
| class SkMatrix; |
| |
| // Path forward: |
| // core work |
| // add validate method (all radii positive, all radii sums < rect size, etc.) |
| // add contains(SkRect&) - for clip stack |
| // add contains(SkRRect&) - for clip stack |
| // add heart rect computation (max rect inside RR) |
| // add 9patch rect computation |
| // add growToInclude(SkPath&) |
| // analysis |
| // use growToInclude to fit skp round rects & generate stats (RRs vs. real paths) |
| // check on # of rectorus's the RRs could handle |
| // rendering work |
| // update SkPath.addRRect() to only use quads |
| // add GM and bench |
| // further out |
| // detect and triangulate RRectorii rather than falling back to SW in Ganesh |
| // |
| |
| /** \class SkRRect |
| |
| The SkRRect class represents a rounded rect with a potentially different |
| radii for each corner. It does not have a constructor so must be |
| initialized with one of the initialization functions (e.g., setEmpty, |
| setRectRadii, etc.) |
| |
| This class is intended to roughly match CSS' border-*-*-radius capabilities. |
| This means: |
| If either of a corner's radii are 0 the corner will be square. |
| Negative radii are not allowed (they are clamped to zero). |
| If the corner curves overlap they will be proportionally reduced to fit. |
| */ |
| class SK_API SkRRect { |
| public: |
| /** |
| * Enum to capture the various possible subtypes of RR. Accessed |
| * by type(). The subtypes become progressively less restrictive. |
| */ |
| enum Type { |
| // !< Internal indicator that the sub type must be computed. |
| kUnknown_Type = -1, |
| |
| // !< The RR is empty |
| kEmpty_Type, |
| |
| //!< The RR is actually a (non-empty) rect (i.e., at least one radius |
| //!< at each corner is zero) |
| kRect_Type, |
| |
| //!< The RR is actually a (non-empty) oval (i.e., all x radii are equal |
| //!< and >= width/2 and all the y radii are equal and >= height/2 |
| kOval_Type, |
| |
| //!< The RR is non-empty and all the x radii are equal & all y radii |
| //!< are equal but it is not an oval (i.e., there are lines between |
| //!< the curves) nor a rect (i.e., both radii are non-zero) |
| kSimple_Type, |
| |
| //!< The RR is non-empty and the two left x radii are equal, the two top |
| //!< y radii are equal, and the same for the right and bottom but it is |
| //!< neither an rect, oval, nor a simple RR. It is called "nine patch" |
| //!< because the centers of the corner ellipses form an axis aligned |
| //!< rect with edges that divide the RR into an 9 rectangular patches: |
| //!< an interior patch, four edge patches, and four corner patches. |
| kNinePatch_Type, |
| |
| //!< A fully general (non-empty) RR. Some of the x and/or y radii are |
| //!< different from the others and there must be one corner where |
| //!< both radii are non-zero. |
| kComplex_Type, |
| }; |
| |
| /** |
| * Returns the RR's sub type. |
| */ |
| Type getType() const { |
| SkDEBUGCODE(this->validate();) |
| |
| if (kUnknown_Type == fType) { |
| this->computeType(); |
| } |
| SkASSERT(kUnknown_Type != fType); |
| return fType; |
| } |
| |
| Type type() const { return this->getType(); } |
| |
| inline bool isEmpty() const { return kEmpty_Type == this->getType(); } |
| inline bool isRect() const { return kRect_Type == this->getType(); } |
| inline bool isOval() const { return kOval_Type == this->getType(); } |
| inline bool isSimple() const { return kSimple_Type == this->getType(); } |
| inline bool isSimpleCircular() const { |
| return this->isSimple() && fRadii[0].fX == fRadii[0].fY; |
| } |
| inline bool isNinePatch() const { return kNinePatch_Type == this->getType(); } |
| inline bool isComplex() const { return kComplex_Type == this->getType(); } |
| |
| bool allCornersCircular() const; |
| |
| SkScalar width() const { return fRect.width(); } |
| SkScalar height() const { return fRect.height(); } |
| |
| /** |
| * Set this RR to the empty rectangle (0,0,0,0) with 0 x & y radii. |
| */ |
| void setEmpty() { |
| fRect.setEmpty(); |
| memset(fRadii, 0, sizeof(fRadii)); |
| fType = kEmpty_Type; |
| |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /** |
| * Set this RR to match the supplied rect. All radii will be 0. |
| */ |
| void setRect(const SkRect& rect) { |
| if (rect.isEmpty()) { |
| this->setEmpty(); |
| return; |
| } |
| |
| fRect = rect; |
| memset(fRadii, 0, sizeof(fRadii)); |
| fType = kRect_Type; |
| |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /** |
| * Set this RR to match the supplied oval. All x radii will equal half the |
| * width and all y radii will equal half the height. |
| */ |
| void setOval(const SkRect& oval) { |
| if (oval.isEmpty()) { |
| this->setEmpty(); |
| return; |
| } |
| |
| SkScalar xRad = SkScalarHalf(oval.width()); |
| SkScalar yRad = SkScalarHalf(oval.height()); |
| |
| fRect = oval; |
| for (int i = 0; i < 4; ++i) { |
| fRadii[i].set(xRad, yRad); |
| } |
| fType = kOval_Type; |
| |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /** |
| * Initialize the RR with the same radii for all four corners. |
| */ |
| void setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad); |
| |
| /** |
| * Initialize the rr with one radius per-side. |
| */ |
| void setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, |
| SkScalar rightRad, SkScalar bottomRad); |
| |
| /** |
| * Initialize the RR with potentially different radii for all four corners. |
| */ |
| void setRectRadii(const SkRect& rect, const SkVector radii[4]); |
| |
| // The radii are stored in UL, UR, LR, LL order. |
| enum Corner { |
| kUpperLeft_Corner, |
| kUpperRight_Corner, |
| kLowerRight_Corner, |
| kLowerLeft_Corner |
| }; |
| |
| const SkRect& rect() const { return fRect; } |
| const SkVector& radii(Corner corner) const { return fRadii[corner]; } |
| const SkRect& getBounds() const { return fRect; } |
| |
| /** |
| * When a rrect is simple, all of its radii are equal. This returns one |
| * of those radii. This call requires the rrect to be non-complex. |
| */ |
| const SkVector& getSimpleRadii() const { |
| SkASSERT(!this->isComplex()); |
| return fRadii[0]; |
| } |
| |
| friend bool operator==(const SkRRect& a, const SkRRect& b) { |
| return a.fRect == b.fRect && |
| SkScalarsEqual(a.fRadii[0].asScalars(), |
| b.fRadii[0].asScalars(), 8); |
| } |
| |
| friend bool operator!=(const SkRRect& a, const SkRRect& b) { |
| return a.fRect != b.fRect || |
| !SkScalarsEqual(a.fRadii[0].asScalars(), |
| b.fRadii[0].asScalars(), 8); |
| } |
| |
| /** |
| * Call inset on the bounds, and adjust the radii to reflect what happens |
| * in stroking: If the corner is sharp (no curvature), leave it alone, |
| * otherwise we grow/shrink the radii by the amount of the inset. If a |
| * given radius becomes negative, it is pinned to 0. |
| * |
| * It is valid for dst == this. |
| */ |
| void inset(SkScalar dx, SkScalar dy, SkRRect* dst) const; |
| |
| void inset(SkScalar dx, SkScalar dy) { |
| this->inset(dx, dy, this); |
| } |
| |
| /** |
| * Call outset on the bounds, and adjust the radii to reflect what happens |
| * in stroking: If the corner is sharp (no curvature), leave it alone, |
| * otherwise we grow/shrink the radii by the amount of the inset. If a |
| * given radius becomes negative, it is pinned to 0. |
| * |
| * It is valid for dst == this. |
| */ |
| void outset(SkScalar dx, SkScalar dy, SkRRect* dst) const { |
| this->inset(-dx, -dy, dst); |
| } |
| void outset(SkScalar dx, SkScalar dy) { |
| this->inset(-dx, -dy, this); |
| } |
| |
| /** |
| * Translate the rrect by (dx, dy). |
| */ |
| void offset(SkScalar dx, SkScalar dy) { |
| fRect.offset(dx, dy); |
| } |
| |
| /** |
| * Returns true if 'rect' is wholy inside the RR, and both |
| * are not empty. |
| */ |
| bool contains(const SkRect& rect) const; |
| |
| SkDEBUGCODE(void validate() const;) |
| |
| enum { |
| kSizeInMemory = 12 * sizeof(SkScalar) |
| }; |
| |
| /** |
| * Write the rrect into the specified buffer. This is guaranteed to always |
| * write kSizeInMemory bytes, and that value is guaranteed to always be |
| * a multiple of 4. Return kSizeInMemory. |
| */ |
| size_t writeToMemory(void* buffer) const; |
| |
| /** |
| * Reads the rrect from the specified buffer |
| * |
| * If the specified buffer is large enough, this will read kSizeInMemory bytes, |
| * and that value is guaranteed to always be a multiple of 4. |
| * |
| * @param buffer Memory to read from |
| * @param length Amount of memory available in the buffer |
| * @return number of bytes read (must be a multiple of 4) or |
| * 0 if there was not enough memory available |
| */ |
| size_t readFromMemory(const void* buffer, size_t length); |
| |
| /** |
| * Transform by the specified matrix, and put the result in dst. |
| * |
| * @param matrix SkMatrix specifying the transform. Must only contain |
| * scale and/or translate, or this call will fail. |
| * @param dst SkRRect to store the result. It is an error to use this, |
| * which would make this function no longer const. |
| * @return true on success, false on failure. If false, dst is unmodified. |
| */ |
| bool transform(const SkMatrix& matrix, SkRRect* dst) const; |
| |
| #ifdef SK_DEVELOPER |
| /** |
| * Prints the rrect using SkDebugf. This is intended for Skia development debugging. Don't |
| * rely on the existence of this function or the formatting of its output. |
| */ |
| void dump() const; |
| #endif |
| |
| private: |
| SkRect fRect; |
| // Radii order is UL, UR, LR, LL. Use Corner enum to index into fRadii[] |
| SkVector fRadii[4]; |
| mutable Type fType; |
| // TODO: add padding so we can use memcpy for flattening and not copy |
| // uninitialized data |
| |
| void computeType() const; |
| bool checkCornerContainment(SkScalar x, SkScalar y) const; |
| |
| // to access fRadii directly |
| friend class SkPath; |
| }; |
| |
| #endif |