| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkFloatingPoint_DEFINED |
| #define SkFloatingPoint_DEFINED |
| |
| #include "SkTypes.h" |
| |
| #include <math.h> |
| #include <float.h> |
| |
| // For _POSIX_VERSION |
| #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) |
| #include <unistd.h> |
| #endif |
| |
| #include "SkFloatBits.h" |
| |
| // C++98 cmath std::pow seems to be the earliest portable way to get float pow. |
| // However, on Linux including cmath undefines isfinite. |
| // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 |
| static inline float sk_float_pow(float base, float exp) { |
| return powf(base, exp); |
| } |
| |
| static inline float sk_float_copysign(float x, float y) { |
| // c++11 contains a 'float copysign(float, float)' function in <cmath>. |
| #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800) |
| return copysign(x, y); |
| |
| // Posix has demanded 'float copysignf(float, float)' (from C99) since Issue 6. |
| #elif defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L |
| return copysignf(x, y); |
| |
| // Visual studio prior to 13 only has 'double _copysign(double, double)'. |
| #elif defined(_MSC_VER) |
| return (float)_copysign(x, y); |
| |
| // Otherwise convert to bits and extract sign. |
| #else |
| int32_t xbits = SkFloat2Bits(x); |
| int32_t ybits = SkFloat2Bits(y); |
| return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000)); |
| #endif |
| } |
| |
| #ifdef SK_BUILD_FOR_WINCE |
| #define sk_float_sqrt(x) (float)::sqrt(x) |
| #define sk_float_sin(x) (float)::sin(x) |
| #define sk_float_cos(x) (float)::cos(x) |
| #define sk_float_tan(x) (float)::tan(x) |
| #define sk_float_acos(x) (float)::acos(x) |
| #define sk_float_asin(x) (float)::asin(x) |
| #define sk_float_atan2(y,x) (float)::atan2(y,x) |
| #define sk_float_abs(x) (float)::fabs(x) |
| #define sk_float_mod(x,y) (float)::fmod(x,y) |
| #define sk_float_exp(x) (float)::exp(x) |
| #define sk_float_log(x) (float)::log(x) |
| #define sk_float_floor(x) (float)::floor(x) |
| #define sk_float_ceil(x) (float)::ceil(x) |
| #else |
| #define sk_float_sqrt(x) sqrtf(x) |
| #define sk_float_sin(x) sinf(x) |
| #define sk_float_cos(x) cosf(x) |
| #define sk_float_tan(x) tanf(x) |
| #define sk_float_floor(x) floorf(x) |
| #define sk_float_ceil(x) ceilf(x) |
| #ifdef SK_BUILD_FOR_MAC |
| #define sk_float_acos(x) static_cast<float>(acos(x)) |
| #define sk_float_asin(x) static_cast<float>(asin(x)) |
| #else |
| #define sk_float_acos(x) acosf(x) |
| #define sk_float_asin(x) asinf(x) |
| #endif |
| #define sk_float_atan2(y,x) atan2f(y,x) |
| #define sk_float_abs(x) fabsf(x) |
| #define sk_float_mod(x,y) fmodf(x,y) |
| #define sk_float_exp(x) expf(x) |
| #define sk_float_log(x) logf(x) |
| #endif |
| |
| #ifdef SK_BUILD_FOR_WIN |
| #define sk_float_isfinite(x) _finite(x) |
| #define sk_float_isnan(x) _isnan(x) |
| static inline int sk_float_isinf(float x) { |
| int32_t bits = SkFloat2Bits(x); |
| return (bits << 1) == (0xFF << 24); |
| } |
| #else |
| #define sk_float_isfinite(x) isfinite(x) |
| #define sk_float_isnan(x) isnan(x) |
| #define sk_float_isinf(x) isinf(x) |
| #endif |
| |
| #define sk_double_isnan(a) sk_float_isnan(a) |
| |
| #ifdef SK_USE_FLOATBITS |
| #define sk_float_floor2int(x) SkFloatToIntFloor(x) |
| #define sk_float_round2int(x) SkFloatToIntRound(x) |
| #define sk_float_ceil2int(x) SkFloatToIntCeil(x) |
| #else |
| #define sk_float_floor2int(x) (int)sk_float_floor(x) |
| #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f) |
| #define sk_float_ceil2int(x) (int)sk_float_ceil(x) |
| #endif |
| |
| extern const uint32_t gIEEENotANumber; |
| extern const uint32_t gIEEEInfinity; |
| extern const uint32_t gIEEENegativeInfinity; |
| |
| #define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber)) |
| #define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity)) |
| #define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity)) |
| |
| #if defined(__SSE__) |
| #include <xmmintrin.h> |
| #elif defined(__ARM_NEON__) |
| #include <arm_neon.h> |
| #endif |
| |
| // Fast, approximate inverse square root. |
| // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. |
| static inline float sk_float_rsqrt(const float x) { |
| // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got |
| // it at compile time. This is going to be too fast to productively hide behind a function pointer. |
| // |
| // We do one step of Newton's method to refine the estimates in the NEON and null paths. No |
| // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. |
| #if defined(__SSE__) |
| float result; |
| _mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x))); |
| return result; |
| #elif defined(__ARM_NEON__) |
| // Get initial estimate. |
| const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. |
| float32x2_t estimate = vrsqrte_f32(xx); |
| |
| // One step of Newton's method to refine. |
| const float32x2_t estimate_sq = vmul_f32(estimate, estimate); |
| estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); |
| return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. |
| #else |
| // Get initial estimate. |
| int i = *SkTCast<int*>(&x); |
| i = 0x5f3759df - (i>>1); |
| float estimate = *SkTCast<float*>(&i); |
| |
| // One step of Newton's method to refine. |
| const float estimate_sq = estimate*estimate; |
| estimate *= (1.5f-0.5f*x*estimate_sq); |
| return estimate; |
| #endif |
| } |
| |
| #endif |