| /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #ifndef SkTArray_DEFINED | 
 | #define SkTArray_DEFINED | 
 |  | 
 | #include <new> | 
 | #include "SkTypes.h" | 
 | #include "SkTemplates.h" | 
 |  | 
 | template <typename T, bool MEM_COPY = false> class SkTArray; | 
 |  | 
 | namespace SkTArrayExt { | 
 |  | 
 | template<typename T> | 
 | inline void copy(SkTArray<T, true>* self, int dst, int src) { | 
 |     memcpy(&self->fItemArray[dst], &self->fItemArray[src], sizeof(T)); | 
 | } | 
 | template<typename T> | 
 | inline void copy(SkTArray<T, true>* self, const T* array) { | 
 |     memcpy(self->fMemArray, array, self->fCount * sizeof(T)); | 
 | } | 
 | template<typename T> | 
 | inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) { | 
 |     memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline void copy(SkTArray<T, false>* self, int dst, int src) { | 
 |     SkNEW_PLACEMENT_ARGS(&self->fItemArray[dst], T, (self->fItemArray[src])); | 
 | } | 
 | template<typename T> | 
 | inline void copy(SkTArray<T, false>* self, const T* array) { | 
 |     for (int i = 0; i < self->fCount; ++i) { | 
 |         SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); | 
 |     } | 
 | } | 
 | template<typename T> | 
 | inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) { | 
 |     for (int i = 0; i < self->fCount; ++i) { | 
 |         SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); | 
 |         self->fItemArray[i].~T(); | 
 |     } | 
 | } | 
 |  | 
 | } | 
 |  | 
 | template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int); | 
 |  | 
 | /** When MEM_COPY is true T will be bit copied when moved. | 
 |     When MEM_COPY is false, T will be copy constructed / destructed. | 
 |     In all cases T will be default-initialized on allocation, | 
 |     and its destructor will be called from this object's destructor. | 
 | */ | 
 | template <typename T, bool MEM_COPY> class SkTArray { | 
 | public: | 
 |     /** | 
 |      * Creates an empty array with no initial storage | 
 |      */ | 
 |     SkTArray() { | 
 |         fCount = 0; | 
 |         fReserveCount = gMIN_ALLOC_COUNT; | 
 |         fAllocCount = 0; | 
 |         fMemArray = NULL; | 
 |         fPreAllocMemArray = NULL; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Creates an empty array that will preallocate space for reserveCount | 
 |      * elements. | 
 |      */ | 
 |     explicit SkTArray(int reserveCount) { | 
 |         this->init(NULL, 0, NULL, reserveCount); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Copies one array to another. The new array will be heap allocated. | 
 |      */ | 
 |     explicit SkTArray(const SkTArray& array) { | 
 |         this->init(array.fItemArray, array.fCount, NULL, 0); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Creates a SkTArray by copying contents of a standard C array. The new | 
 |      * array will be heap allocated. Be careful not to use this constructor | 
 |      * when you really want the (void*, int) version. | 
 |      */ | 
 |     SkTArray(const T* array, int count) { | 
 |         this->init(array, count, NULL, 0); | 
 |     } | 
 |  | 
 |     /** | 
 |      * assign copy of array to this | 
 |      */ | 
 |     SkTArray& operator =(const SkTArray& array) { | 
 |         for (int i = 0; i < fCount; ++i) { | 
 |             fItemArray[i].~T(); | 
 |         } | 
 |         fCount = 0; | 
 |         this->checkRealloc((int)array.count()); | 
 |         fCount = array.count(); | 
 |         SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray)); | 
 |         return *this; | 
 |     } | 
 |  | 
 |     virtual ~SkTArray() { | 
 |         for (int i = 0; i < fCount; ++i) { | 
 |             fItemArray[i].~T(); | 
 |         } | 
 |         if (fMemArray != fPreAllocMemArray) { | 
 |             sk_free(fMemArray); | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Resets to count() == 0 | 
 |      */ | 
 |     void reset() { this->pop_back_n(fCount); } | 
 |  | 
 |     /** | 
 |      * Resets to count() = n newly constructed T objects. | 
 |      */ | 
 |     void reset(int n) { | 
 |         SkASSERT(n >= 0); | 
 |         for (int i = 0; i < fCount; ++i) { | 
 |             fItemArray[i].~T(); | 
 |         } | 
 |         // set fCount to 0 before calling checkRealloc so that no copy cons. are called. | 
 |         fCount = 0; | 
 |         this->checkRealloc(n); | 
 |         fCount = n; | 
 |         for (int i = 0; i < fCount; ++i) { | 
 |             SkNEW_PLACEMENT(fItemArray + i, T); | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Resets to a copy of a C array. | 
 |      */ | 
 |     void reset(const T* array, int count) { | 
 |         for (int i = 0; i < fCount; ++i) { | 
 |             fItemArray[i].~T(); | 
 |         } | 
 |         int delta = count - fCount; | 
 |         this->checkRealloc(delta); | 
 |         fCount = count; | 
 |         SkTArrayExt::copy(this, array); | 
 |     } | 
 |  | 
 |     void removeShuffle(int n) { | 
 |         SkASSERT(n < fCount); | 
 |         int newCount = fCount - 1; | 
 |         fCount = newCount; | 
 |         fItemArray[n].~T(); | 
 |         if (n != newCount) { | 
 |             SkTArrayExt::copy(this, n, newCount); | 
 |             fItemArray[newCount].~T(); | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Number of elements in the array. | 
 |      */ | 
 |     int count() const { return fCount; } | 
 |  | 
 |     /** | 
 |      * Is the array empty. | 
 |      */ | 
 |     bool empty() const { return !fCount; } | 
 |  | 
 |     /** | 
 |      * Adds 1 new default-initialized T value and returns it by reference. Note | 
 |      * the reference only remains valid until the next call that adds or removes | 
 |      * elements. | 
 |      */ | 
 |     T& push_back() { | 
 |         T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); | 
 |         SkNEW_PLACEMENT(newT, T); | 
 |         return *newT; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Version of above that uses a copy constructor to initialize the new item | 
 |      */ | 
 |     T& push_back(const T& t) { | 
 |         T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); | 
 |         SkNEW_PLACEMENT_ARGS(newT, T, (t)); | 
 |         return *newT; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Allocates n more default-initialized T values, and returns the address of | 
 |      * the start of that new range. Note: this address is only valid until the | 
 |      * next API call made on the array that might add or remove elements. | 
 |      */ | 
 |     T* push_back_n(int n) { | 
 |         SkASSERT(n >= 0); | 
 |         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); | 
 |         for (int i = 0; i < n; ++i) { | 
 |             SkNEW_PLACEMENT(newTs + i, T); | 
 |         } | 
 |         return newTs; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Version of above that uses a copy constructor to initialize all n items | 
 |      * to the same T. | 
 |      */ | 
 |     T* push_back_n(int n, const T& t) { | 
 |         SkASSERT(n >= 0); | 
 |         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); | 
 |         for (int i = 0; i < n; ++i) { | 
 |             SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); | 
 |         } | 
 |         return newTs; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Version of above that uses a copy constructor to initialize the n items | 
 |      * to separate T values. | 
 |      */ | 
 |     T* push_back_n(int n, const T t[]) { | 
 |         SkASSERT(n >= 0); | 
 |         this->checkRealloc(n); | 
 |         for (int i = 0; i < n; ++i) { | 
 |             SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); | 
 |         } | 
 |         fCount += n; | 
 |         return fItemArray + fCount - n; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Removes the last element. Not safe to call when count() == 0. | 
 |      */ | 
 |     void pop_back() { | 
 |         SkASSERT(fCount > 0); | 
 |         --fCount; | 
 |         fItemArray[fCount].~T(); | 
 |         this->checkRealloc(0); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Removes the last n elements. Not safe to call when count() < n. | 
 |      */ | 
 |     void pop_back_n(int n) { | 
 |         SkASSERT(n >= 0); | 
 |         SkASSERT(fCount >= n); | 
 |         fCount -= n; | 
 |         for (int i = 0; i < n; ++i) { | 
 |             fItemArray[fCount + i].~T(); | 
 |         } | 
 |         this->checkRealloc(0); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Pushes or pops from the back to resize. Pushes will be default | 
 |      * initialized. | 
 |      */ | 
 |     void resize_back(int newCount) { | 
 |         SkASSERT(newCount >= 0); | 
 |  | 
 |         if (newCount > fCount) { | 
 |             this->push_back_n(newCount - fCount); | 
 |         } else if (newCount < fCount) { | 
 |             this->pop_back_n(fCount - newCount); | 
 |         } | 
 |     } | 
 |  | 
 |     T* begin() { | 
 |         return fItemArray; | 
 |     } | 
 |     const T* begin() const { | 
 |         return fItemArray; | 
 |     } | 
 |     T* end() { | 
 |         return fItemArray ? fItemArray + fCount : NULL; | 
 |     } | 
 |     const T* end() const { | 
 |         return fItemArray ? fItemArray + fCount : NULL;; | 
 |     } | 
 |  | 
 |    /** | 
 |      * Get the i^th element. | 
 |      */ | 
 |     T& operator[] (int i) { | 
 |         SkASSERT(i < fCount); | 
 |         SkASSERT(i >= 0); | 
 |         return fItemArray[i]; | 
 |     } | 
 |  | 
 |     const T& operator[] (int i) const { | 
 |         SkASSERT(i < fCount); | 
 |         SkASSERT(i >= 0); | 
 |         return fItemArray[i]; | 
 |     } | 
 |  | 
 |     /** | 
 |      * equivalent to operator[](0) | 
 |      */ | 
 |     T& front() { SkASSERT(fCount > 0); return fItemArray[0];} | 
 |  | 
 |     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} | 
 |  | 
 |     /** | 
 |      * equivalent to operator[](count() - 1) | 
 |      */ | 
 |     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} | 
 |  | 
 |     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} | 
 |  | 
 |     /** | 
 |      * equivalent to operator[](count()-1-i) | 
 |      */ | 
 |     T& fromBack(int i) { | 
 |         SkASSERT(i >= 0); | 
 |         SkASSERT(i < fCount); | 
 |         return fItemArray[fCount - i - 1]; | 
 |     } | 
 |  | 
 |     const T& fromBack(int i) const { | 
 |         SkASSERT(i >= 0); | 
 |         SkASSERT(i < fCount); | 
 |         return fItemArray[fCount - i - 1]; | 
 |     } | 
 |  | 
 |     bool operator==(const SkTArray<T, MEM_COPY>& right) const { | 
 |         int leftCount = this->count(); | 
 |         if (leftCount != right.count()) { | 
 |             return false; | 
 |         } | 
 |         for (int index = 0; index < leftCount; ++index) { | 
 |             if (fItemArray[index] != right.fItemArray[index]) { | 
 |                 return false; | 
 |             } | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     bool operator!=(const SkTArray<T, MEM_COPY>& right) const { | 
 |         return !(*this == right); | 
 |     } | 
 |  | 
 | protected: | 
 |     /** | 
 |      * Creates an empty array that will use the passed storage block until it | 
 |      * is insufficiently large to hold the entire array. | 
 |      */ | 
 |     template <int N> | 
 |     SkTArray(SkAlignedSTStorage<N,T>* storage) { | 
 |         this->init(NULL, 0, storage->get(), N); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Copy another array, using preallocated storage if preAllocCount >= | 
 |      * array.count(). Otherwise storage will only be used when array shrinks | 
 |      * to fit. | 
 |      */ | 
 |     template <int N> | 
 |     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { | 
 |         this->init(array.fItemArray, array.fCount, storage->get(), N); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Copy a C array, using preallocated storage if preAllocCount >= | 
 |      * count. Otherwise storage will only be used when array shrinks | 
 |      * to fit. | 
 |      */ | 
 |     template <int N> | 
 |     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { | 
 |         this->init(array, count, storage->get(), N); | 
 |     } | 
 |  | 
 |     void init(const T* array, int count, | 
 |                void* preAllocStorage, int preAllocOrReserveCount) { | 
 |         SkASSERT(count >= 0); | 
 |         SkASSERT(preAllocOrReserveCount >= 0); | 
 |         fCount              = count; | 
 |         fReserveCount       = (preAllocOrReserveCount > 0) ? | 
 |                                     preAllocOrReserveCount : | 
 |                                     gMIN_ALLOC_COUNT; | 
 |         fPreAllocMemArray   = preAllocStorage; | 
 |         if (fReserveCount >= fCount && | 
 |             preAllocStorage) { | 
 |             fAllocCount = fReserveCount; | 
 |             fMemArray = preAllocStorage; | 
 |         } else { | 
 |             fAllocCount = SkMax32(fCount, fReserveCount); | 
 |             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); | 
 |         } | 
 |  | 
 |         SkTArrayExt::copy(this, array); | 
 |     } | 
 |  | 
 | private: | 
 |  | 
 |     static const int gMIN_ALLOC_COUNT = 8; | 
 |  | 
 |     // Helper function that makes space for n objects, adjusts the count, but does not initialize | 
 |     // the new objects. | 
 |     void* push_back_raw(int n) { | 
 |         this->checkRealloc(n); | 
 |         void* ptr = fItemArray + fCount; | 
 |         fCount += n; | 
 |         return ptr; | 
 |     } | 
 |  | 
 |     inline void checkRealloc(int delta) { | 
 |         SkASSERT(fCount >= 0); | 
 |         SkASSERT(fAllocCount >= 0); | 
 |  | 
 |         SkASSERT(-delta <= fCount); | 
 |  | 
 |         int newCount = fCount + delta; | 
 |         int newAllocCount = fAllocCount; | 
 |  | 
 |         if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { | 
 |             // whether we're growing or shrinking, we leave at least 50% extra space for future | 
 |             // growth (clamped to the reserve count). | 
 |             newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); | 
 |         } | 
 |         if (newAllocCount != fAllocCount) { | 
 |  | 
 |             fAllocCount = newAllocCount; | 
 |             char* newMemArray; | 
 |  | 
 |             if (fAllocCount == fReserveCount && fPreAllocMemArray) { | 
 |                 newMemArray = (char*) fPreAllocMemArray; | 
 |             } else { | 
 |                 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); | 
 |             } | 
 |  | 
 |             SkTArrayExt::copyAndDelete<T>(this, newMemArray); | 
 |  | 
 |             if (fMemArray != fPreAllocMemArray) { | 
 |                 sk_free(fMemArray); | 
 |             } | 
 |             fMemArray = newMemArray; | 
 |         } | 
 |     } | 
 |  | 
 |     friend void* operator new<T>(size_t, SkTArray*, int); | 
 |  | 
 |     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, int dst, int src); | 
 |     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*); | 
 |     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*); | 
 |  | 
 |     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, int dst, int src); | 
 |     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*); | 
 |     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*); | 
 |  | 
 |     int fReserveCount; | 
 |     int fCount; | 
 |     int fAllocCount; | 
 |     void*    fPreAllocMemArray; | 
 |     union { | 
 |         T*       fItemArray; | 
 |         void*    fMemArray; | 
 |     }; | 
 | }; | 
 |  | 
 | // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly | 
 | template <typename T, bool MEM_COPY> | 
 | void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int SkDEBUGCODE(atIndex)) { | 
 |     // Currently, we only support adding to the end of the array. When the array class itself | 
 |     // supports random insertion then this should be updated. | 
 |     // SkASSERT(atIndex >= 0 && atIndex <= array->count()); | 
 |     SkASSERT(atIndex == array->count()); | 
 |     return array->push_back_raw(1); | 
 | } | 
 |  | 
 | // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete | 
 | // to match the op new silences warnings about missing op delete when a constructor throws an | 
 | // exception. | 
 | template <typename T, bool MEM_COPY> | 
 | void operator delete(void*, SkTArray<T, MEM_COPY>* /*array*/, int /*atIndex*/) { | 
 |     SK_CRASH(); | 
 | } | 
 |  | 
 | // Constructs a new object as the last element of an SkTArray. | 
 | #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args)  \ | 
 |     (new ((array_ptr), (array_ptr)->count()) type_name args) | 
 |  | 
 |  | 
 | /** | 
 |  * Subclass of SkTArray that contains a preallocated memory block for the array. | 
 |  */ | 
 | template <int N, typename T, bool MEM_COPY = false> | 
 | class SkSTArray : public SkTArray<T, MEM_COPY> { | 
 | private: | 
 |     typedef SkTArray<T, MEM_COPY> INHERITED; | 
 |  | 
 | public: | 
 |     SkSTArray() : INHERITED(&fStorage) { | 
 |     } | 
 |  | 
 |     SkSTArray(const SkSTArray& array) | 
 |         : INHERITED(array, &fStorage) { | 
 |     } | 
 |  | 
 |     explicit SkSTArray(const INHERITED& array) | 
 |         : INHERITED(array, &fStorage) { | 
 |     } | 
 |  | 
 |     explicit SkSTArray(int reserveCount) | 
 |         : INHERITED(reserveCount) { | 
 |     } | 
 |  | 
 |     SkSTArray(const T* array, int count) | 
 |         : INHERITED(array, count, &fStorage) { | 
 |     } | 
 |  | 
 |     SkSTArray& operator= (const SkSTArray& array) { | 
 |         return *this = *(const INHERITED*)&array; | 
 |     } | 
 |  | 
 |     SkSTArray& operator= (const INHERITED& array) { | 
 |         INHERITED::operator=(array); | 
 |         return *this; | 
 |     } | 
 |  | 
 | private: | 
 |     SkAlignedSTStorage<N,T> fStorage; | 
 | }; | 
 |  | 
 | #endif |