blob: 8f5309e4cdde32eb3f01515cb843def66325a935 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/vk/GrVkGpuCommandBuffer.h"
#include "include/core/SkDrawable.h"
#include "include/core/SkRect.h"
#include "include/gpu/GrBackendDrawableInfo.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrFixedClip.h"
#include "src/gpu/GrMesh.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrRenderTargetPriv.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/vk/GrVkCommandBuffer.h"
#include "src/gpu/vk/GrVkCommandPool.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkPipeline.h"
#include "src/gpu/vk/GrVkRenderPass.h"
#include "src/gpu/vk/GrVkRenderTarget.h"
#include "src/gpu/vk/GrVkResourceProvider.h"
#include "src/gpu/vk/GrVkSemaphore.h"
#include "src/gpu/vk/GrVkTexture.h"
GrVkPrimaryCommandBufferTask::~GrVkPrimaryCommandBufferTask() = default;
GrVkPrimaryCommandBufferTask::GrVkPrimaryCommandBufferTask() = default;
namespace {
class InlineUpload : public GrVkPrimaryCommandBufferTask {
public:
InlineUpload(GrOpFlushState* state, const GrDeferredTextureUploadFn& upload)
: fFlushState(state), fUpload(upload) {}
void execute(const Args& args) override { fFlushState->doUpload(fUpload); }
private:
GrOpFlushState* fFlushState;
GrDeferredTextureUploadFn fUpload;
};
} // anonymous namespace
/////////////////////////////////////////////////////////////////////////////
void GrVkGpuTextureCommandBuffer::insertEventMarker(const char* msg) {
// TODO: does Vulkan have a correlate?
}
void GrVkGpuTextureCommandBuffer::submit() {
GrVkPrimaryCommandBufferTask::Args taskArgs{fGpu, fTexture};
for (auto& task : fTasks) {
task.execute(taskArgs);
}
}
////////////////////////////////////////////////////////////////////////////////
void get_vk_load_store_ops(GrLoadOp loadOpIn, GrStoreOp storeOpIn,
VkAttachmentLoadOp* loadOp, VkAttachmentStoreOp* storeOp) {
switch (loadOpIn) {
case GrLoadOp::kLoad:
*loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case GrLoadOp::kClear:
*loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case GrLoadOp::kDiscard:
*loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
default:
SK_ABORT("Invalid LoadOp");
*loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
}
switch (storeOpIn) {
case GrStoreOp::kStore:
*storeOp = VK_ATTACHMENT_STORE_OP_STORE;
break;
case GrStoreOp::kDiscard:
*storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
break;
default:
SK_ABORT("Invalid StoreOp");
*storeOp = VK_ATTACHMENT_STORE_OP_STORE;
}
}
GrVkGpuRTCommandBuffer::GrVkGpuRTCommandBuffer(GrVkGpu* gpu) : fGpu(gpu) {}
void GrVkGpuRTCommandBuffer::init() {
GrVkRenderPass::LoadStoreOps vkColorOps(fVkColorLoadOp, fVkColorStoreOp);
GrVkRenderPass::LoadStoreOps vkStencilOps(fVkStencilLoadOp, fVkStencilStoreOp);
CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back();
SkASSERT(fCommandBufferInfos.count() == 1);
fCurrentCmdInfo = 0;
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
cbInfo.fColorClearValue.color.float32[0] = fClearColor[0];
cbInfo.fColorClearValue.color.float32[1] = fClearColor[1];
cbInfo.fColorClearValue.color.float32[2] = fClearColor[2];
cbInfo.fColorClearValue.color.float32[3] = fClearColor[3];
if (VK_ATTACHMENT_LOAD_OP_CLEAR == fVkColorLoadOp) {
cbInfo.fBounds = SkRect::MakeWH(vkRT->width(), vkRT->height());
} else {
cbInfo.fBounds.setEmpty();
}
if (VK_ATTACHMENT_LOAD_OP_CLEAR == fVkColorLoadOp) {
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithClear;
} else if (VK_ATTACHMENT_LOAD_OP_LOAD == fVkColorLoadOp &&
VK_ATTACHMENT_STORE_OP_STORE == fVkColorStoreOp) {
cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore;
} else if (VK_ATTACHMENT_LOAD_OP_DONT_CARE == fVkColorLoadOp) {
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithDiscard;
}
cbInfo.fCommandBuffer = fGpu->cmdPool()->findOrCreateSecondaryCommandBuffer(fGpu);
cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass);
}
void GrVkGpuRTCommandBuffer::initWrapped() {
CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back();
SkASSERT(fCommandBufferInfos.count() == 1);
fCurrentCmdInfo = 0;
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
SkASSERT(vkRT->wrapsSecondaryCommandBuffer());
cbInfo.fRenderPass = vkRT->externalRenderPass();
cbInfo.fRenderPass->ref();
cbInfo.fBounds.setEmpty();
cbInfo.fCommandBuffer.reset(
GrVkSecondaryCommandBuffer::Create(vkRT->getExternalSecondaryCommandBuffer()));
cbInfo.currentCmdBuf()->begin(fGpu, nullptr, cbInfo.fRenderPass);
}
GrVkGpuRTCommandBuffer::~GrVkGpuRTCommandBuffer() {
this->reset();
}
GrGpu* GrVkGpuRTCommandBuffer::gpu() { return fGpu; }
void GrVkGpuRTCommandBuffer::end() {
if (fCurrentCmdInfo >= 0) {
fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf()->end(fGpu);
}
}
void GrVkGpuRTCommandBuffer::submit() {
if (!fRenderTarget) {
return;
}
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
GrVkImage* targetImage = vkRT->msaaImage() ? vkRT->msaaImage() : vkRT;
GrStencilAttachment* stencil = fRenderTarget->renderTargetPriv().getStencilAttachment();
auto currPreCmd = fPreCommandBufferTasks.begin();
GrVkPrimaryCommandBufferTask::Args taskArgs{fGpu, fRenderTarget};
for (int i = 0; i < fCommandBufferInfos.count(); ++i) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[i];
for (int c = 0; c < cbInfo.fNumPreCmds; ++c, ++currPreCmd) {
currPreCmd->execute(taskArgs);
}
// TODO: Many things create a scratch texture which adds the discard immediately, but then
// don't draw to it right away. This causes the discard to be ignored and we get yelled at
// for loading uninitialized data. However, once MDB lands with reordering, the discard will
// get reordered with the rest of the draw commands and we can remove the discard check.
if (cbInfo.fIsEmpty &&
cbInfo.fLoadStoreState != LoadStoreState::kStartsWithClear &&
cbInfo.fLoadStoreState != LoadStoreState::kStartsWithDiscard) {
// We have sumbitted no actual draw commands to the command buffer and we are not using
// the render pass to do a clear so there is no need to submit anything.
continue;
}
// We don't want to actually submit the secondary command buffer if it is wrapped.
if (this->wrapsSecondaryCommandBuffer()) {
// If we have any sampled images set their layout now.
for (int j = 0; j < cbInfo.fSampledTextures.count(); ++j) {
cbInfo.fSampledTextures[j]->setImageLayout(
fGpu, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, false);
}
// There should have only been one secondary command buffer in the wrapped case so it is
// safe to just return here.
SkASSERT(fCommandBufferInfos.count() == 1);
return;
}
// Make sure if we only have a discard load that we execute the discard on the whole image.
// TODO: Once we improve our tracking of discards so that we never end up flushing a discard
// call with no actually ops, remove this.
if (cbInfo.fIsEmpty && cbInfo.fLoadStoreState == LoadStoreState::kStartsWithDiscard) {
cbInfo.fBounds = SkRect::MakeWH(vkRT->width(), vkRT->height());
}
if (cbInfo.fBounds.intersect(0, 0,
SkIntToScalar(fRenderTarget->width()),
SkIntToScalar(fRenderTarget->height()))) {
// Make sure we do the following layout changes after all copies, uploads, or any other
// pre-work is done since we may change the layouts in the pre-work. Also since the
// draws will be submitted in different render passes, we need to guard againts write
// and write issues.
// Change layout of our render target so it can be used as the color attachment.
// TODO: If we know that we will never be blending or loading the attachment we could
// drop the VK_ACCESS_COLOR_ATTACHMENT_READ_BIT.
targetImage->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
false);
// If we are using a stencil attachment we also need to update its layout
if (stencil) {
GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil;
// We need the write and read access bits since we may load and store the stencil.
// The initial load happens in the VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT so we
// wait there.
vkStencil->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT,
false);
}
// If we have any sampled images set their layout now.
for (int j = 0; j < cbInfo.fSampledTextures.count(); ++j) {
cbInfo.fSampledTextures[j]->setImageLayout(
fGpu, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, false);
}
SkIRect iBounds;
cbInfo.fBounds.roundOut(&iBounds);
fGpu->submitSecondaryCommandBuffer(std::move(cbInfo.fCommandBuffer), cbInfo.fRenderPass,
&cbInfo.fColorClearValue, vkRT, fOrigin, iBounds);
}
}
SkASSERT(currPreCmd == fPreCommandBufferTasks.end());
}
void GrVkGpuRTCommandBuffer::set(GrRenderTarget* rt, GrSurfaceOrigin origin,
const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) {
SkASSERT(!fRenderTarget);
SkASSERT(fCommandBufferInfos.empty());
SkASSERT(-1 == fCurrentCmdInfo);
SkASSERT(fGpu == rt->getContext()->priv().getGpu());
SkASSERT(!fLastPipelineState);
#ifdef SK_DEBUG
fIsActive = true;
#endif
this->INHERITED::set(rt, origin);
if (this->wrapsSecondaryCommandBuffer()) {
this->initWrapped();
return;
}
fClearColor = colorInfo.fClearColor;
get_vk_load_store_ops(colorInfo.fLoadOp, colorInfo.fStoreOp,
&fVkColorLoadOp, &fVkColorStoreOp);
get_vk_load_store_ops(stencilInfo.fLoadOp, stencilInfo.fStoreOp,
&fVkStencilLoadOp, &fVkStencilStoreOp);
this->init();
}
void GrVkGpuRTCommandBuffer::reset() {
for (int i = 0; i < fCommandBufferInfos.count(); ++i) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[i];
if (cbInfo.fCommandBuffer) {
cbInfo.fCommandBuffer.release()->recycle(fGpu);
}
cbInfo.fRenderPass->unref(fGpu);
}
fCommandBufferInfos.reset();
fPreCommandBufferTasks.reset();
fCurrentCmdInfo = -1;
fLastPipelineState = nullptr;
fRenderTarget = nullptr;
#ifdef SK_DEBUG
fIsActive = false;
#endif
}
bool GrVkGpuRTCommandBuffer::wrapsSecondaryCommandBuffer() const {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
return vkRT->wrapsSecondaryCommandBuffer();
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuRTCommandBuffer::insertEventMarker(const char* msg) {
// TODO: does Vulkan have a correlate?
}
void GrVkGpuRTCommandBuffer::onClearStencilClip(const GrFixedClip& clip, bool insideStencilMask) {
SkASSERT(!clip.hasWindowRectangles());
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
GrStencilAttachment* sb = fRenderTarget->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
int stencilBitCount = sb->bits();
// The contract with the callers does not guarantee that we preserve all bits in the stencil
// during this clear. Thus we will clear the entire stencil to the desired value.
VkClearDepthStencilValue vkStencilColor;
memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue));
if (insideStencilMask) {
vkStencilColor.stencil = (1 << (stencilBitCount - 1));
} else {
vkStencilColor.stencil = 0;
}
VkClearRect clearRect;
// Flip rect if necessary
SkIRect vkRect;
if (!clip.scissorEnabled()) {
vkRect.setXYWH(0, 0, fRenderTarget->width(), fRenderTarget->height());
} else if (kBottomLeft_GrSurfaceOrigin != fOrigin) {
vkRect = clip.scissorRect();
} else {
const SkIRect& scissor = clip.scissorRect();
vkRect.setLTRB(scissor.fLeft, fRenderTarget->height() - scissor.fBottom,
scissor.fRight, fRenderTarget->height() - scissor.fTop);
}
clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop };
clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() };
clearRect.baseArrayLayer = 0;
clearRect.layerCount = 1;
uint32_t stencilIndex;
SkAssertResult(cbInfo.fRenderPass->stencilAttachmentIndex(&stencilIndex));
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
attachment.colorAttachment = 0; // this value shouldn't matter
attachment.clearValue.depthStencil = vkStencilColor;
cbInfo.currentCmdBuf()->clearAttachments(fGpu, 1, &attachment, 1, &clearRect);
cbInfo.fIsEmpty = false;
// Update command buffer bounds
if (!clip.scissorEnabled()) {
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
} else {
cbInfo.fBounds.join(SkRect::Make(clip.scissorRect()));
}
}
void GrVkGpuRTCommandBuffer::onClear(const GrFixedClip& clip, const SkPMColor4f& color) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
// parent class should never let us get here with no RT
SkASSERT(!clip.hasWindowRectangles());
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
VkClearColorValue vkColor = {{color.fR, color.fG, color.fB, color.fA}};
if (cbInfo.fIsEmpty && !clip.scissorEnabled()) {
// Change the render pass to do a clear load
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_STORE);
// Preserve the stencil buffer's load & store settings
GrVkRenderPass::LoadStoreOps vkStencilOps(fVkStencilLoadOp, fVkStencilStoreOp);
const GrVkRenderPass* oldRP = cbInfo.fRenderPass;
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP));
oldRP->unref(fGpu);
cbInfo.fColorClearValue.color = {{color.fR, color.fG, color.fB, color.fA}};
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithClear;
// Update command buffer bounds
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
return;
}
// We always do a sub rect clear with clearAttachments since we are inside a render pass
VkClearRect clearRect;
// Flip rect if necessary
SkIRect vkRect;
if (!clip.scissorEnabled()) {
vkRect.setXYWH(0, 0, fRenderTarget->width(), fRenderTarget->height());
} else if (kBottomLeft_GrSurfaceOrigin != fOrigin) {
vkRect = clip.scissorRect();
} else {
const SkIRect& scissor = clip.scissorRect();
vkRect.setLTRB(scissor.fLeft, fRenderTarget->height() - scissor.fBottom,
scissor.fRight, fRenderTarget->height() - scissor.fTop);
}
clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop };
clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() };
clearRect.baseArrayLayer = 0;
clearRect.layerCount = 1;
uint32_t colorIndex;
SkAssertResult(cbInfo.fRenderPass->colorAttachmentIndex(&colorIndex));
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = colorIndex;
attachment.clearValue.color = vkColor;
cbInfo.currentCmdBuf()->clearAttachments(fGpu, 1, &attachment, 1, &clearRect);
cbInfo.fIsEmpty = false;
// Update command buffer bounds
if (!clip.scissorEnabled()) {
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
} else {
cbInfo.fBounds.join(SkRect::Make(clip.scissorRect()));
}
return;
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuRTCommandBuffer::addAdditionalRenderPass() {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf()->end(fGpu);
CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back();
fCurrentCmdInfo++;
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore;
cbInfo.fCommandBuffer = fGpu->cmdPool()->findOrCreateSecondaryCommandBuffer(fGpu);
// It shouldn't matter what we set the clear color to here since we will assume loading of the
// attachment.
memset(&cbInfo.fColorClearValue, 0, sizeof(VkClearValue));
cbInfo.fBounds.setEmpty();
cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass);
}
void GrVkGpuRTCommandBuffer::inlineUpload(GrOpFlushState* state,
GrDeferredTextureUploadFn& upload) {
if (!fCommandBufferInfos[fCurrentCmdInfo].fIsEmpty) {
this->addAdditionalRenderPass();
}
fPreCommandBufferTasks.emplace<InlineUpload>(state, upload);
++fCommandBufferInfos[fCurrentCmdInfo].fNumPreCmds;
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuRTCommandBuffer::bindGeometry(const GrGpuBuffer* indexBuffer,
const GrGpuBuffer* vertexBuffer,
const GrGpuBuffer* instanceBuffer) {
GrVkSecondaryCommandBuffer* currCmdBuf = fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf();
// There is no need to put any memory barriers to make sure host writes have finished here.
// When a command buffer is submitted to a queue, there is an implicit memory barrier that
// occurs for all host writes. Additionally, BufferMemoryBarriers are not allowed inside of
// an active RenderPass.
// Here our vertex and instance inputs need to match the same 0-based bindings they were
// assigned in GrVkPipeline. That is, vertex first (if any) followed by instance.
uint32_t binding = 0;
if (vertexBuffer) {
SkASSERT(vertexBuffer);
SkASSERT(!vertexBuffer->isMapped());
currCmdBuf->bindInputBuffer(fGpu, binding++,
static_cast<const GrVkVertexBuffer*>(vertexBuffer));
}
if (instanceBuffer) {
SkASSERT(instanceBuffer);
SkASSERT(!instanceBuffer->isMapped());
currCmdBuf->bindInputBuffer(fGpu, binding++,
static_cast<const GrVkVertexBuffer*>(instanceBuffer));
}
if (indexBuffer) {
SkASSERT(indexBuffer);
SkASSERT(!indexBuffer->isMapped());
currCmdBuf->bindIndexBuffer(fGpu, static_cast<const GrVkIndexBuffer*>(indexBuffer));
}
}
GrVkPipelineState* GrVkGpuRTCommandBuffer::prepareDrawState(
const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrPipeline::FixedDynamicState* fixedDynamicState,
const GrPipeline::DynamicStateArrays* dynamicStateArrays,
GrPrimitiveType primitiveType) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
SkASSERT(cbInfo.fRenderPass);
VkRenderPass compatibleRenderPass = cbInfo.fRenderPass->vkRenderPass();
const GrTextureProxy* const* primProcProxies = nullptr;
if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) {
primProcProxies = dynamicStateArrays->fPrimitiveProcessorTextures;
} else if (fixedDynamicState) {
primProcProxies = fixedDynamicState->fPrimitiveProcessorTextures;
}
SkASSERT(SkToBool(primProcProxies) == SkToBool(primProc.numTextureSamplers()));
GrVkPipelineState* pipelineState =
fGpu->resourceProvider().findOrCreateCompatiblePipelineState(fRenderTarget, fOrigin,
pipeline,
primProc,
primProcProxies,
primitiveType,
compatibleRenderPass);
if (!pipelineState) {
return pipelineState;
}
fLastPipelineState = pipelineState;
pipelineState->bindPipeline(fGpu, cbInfo.currentCmdBuf());
pipelineState->setAndBindUniforms(fGpu, fRenderTarget, fOrigin,
primProc, pipeline, cbInfo.currentCmdBuf());
// Check whether we need to bind textures between each GrMesh. If not we can bind them all now.
bool setTextures = !(dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures);
if (setTextures) {
pipelineState->setAndBindTextures(fGpu, primProc, pipeline, primProcProxies,
cbInfo.currentCmdBuf());
}
if (!pipeline.isScissorEnabled()) {
GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(),
fRenderTarget, fOrigin,
SkIRect::MakeWH(fRenderTarget->width(),
fRenderTarget->height()));
} else if (!dynamicStateArrays || !dynamicStateArrays->fScissorRects) {
SkASSERT(fixedDynamicState);
GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget,
fOrigin,
fixedDynamicState->fScissorRect);
}
GrVkPipeline::SetDynamicViewportState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget);
GrVkPipeline::SetDynamicBlendConstantState(fGpu, cbInfo.currentCmdBuf(),
pipeline.outputSwizzle(),
pipeline.getXferProcessor());
return pipelineState;
}
void GrVkGpuRTCommandBuffer::onDraw(const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrPipeline::FixedDynamicState* fixedDynamicState,
const GrPipeline::DynamicStateArrays* dynamicStateArrays,
const GrMesh meshes[],
int meshCount,
const SkRect& bounds) {
if (!meshCount) {
return;
}
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
auto prepareSampledImage = [&](GrTexture* texture, GrSamplerState::Filter filter) {
GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture);
// We may need to resolve the texture first if it is also a render target
GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(vkTexture->asRenderTarget());
if (texRT && texRT->needsResolve()) {
fGpu->resolveRenderTargetNoFlush(texRT);
// TEMPORARY: MSAA resolve will have dirtied mipmaps. This goes away once we switch
// to resolving MSAA from the opsTask as well.
if (GrSamplerState::Filter::kMipMap == filter &&
(vkTexture->width() != 1 || vkTexture->height() != 1)) {
SkASSERT(vkTexture->texturePriv().mipMapped() == GrMipMapped::kYes);
SkASSERT(vkTexture->texturePriv().mipMapsAreDirty());
fGpu->regenerateMipMapLevels(vkTexture);
}
}
// Ensure mip maps were all resolved ahead of time by the opsTask.
if (GrSamplerState::Filter::kMipMap == filter &&
(vkTexture->width() != 1 || vkTexture->height() != 1)) {
SkASSERT(vkTexture->texturePriv().mipMapped() == GrMipMapped::kYes);
SkASSERT(!vkTexture->texturePriv().mipMapsAreDirty());
}
};
if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) {
for (int m = 0, i = 0; m < meshCount; ++m) {
for (int s = 0; s < primProc.numTextureSamplers(); ++s, ++i) {
auto texture = dynamicStateArrays->fPrimitiveProcessorTextures[i]->peekTexture();
prepareSampledImage(texture, primProc.textureSampler(s).samplerState().filter());
this->appendSampledTexture(texture);
}
}
} else {
for (int i = 0; i < primProc.numTextureSamplers(); ++i) {
auto texture = fixedDynamicState->fPrimitiveProcessorTextures[i]->peekTexture();
prepareSampledImage(texture, primProc.textureSampler(i).samplerState().filter());
this->appendSampledTexture(texture);
}
}
GrFragmentProcessor::Iter iter(pipeline);
while (const GrFragmentProcessor* fp = iter.next()) {
for (int i = 0; i < fp->numTextureSamplers(); ++i) {
const GrFragmentProcessor::TextureSampler& sampler = fp->textureSampler(i);
prepareSampledImage(sampler.peekTexture(), sampler.samplerState().filter());
this->appendSampledTexture(sampler.peekTexture());
}
}
if (GrTexture* dstTexture = pipeline.peekDstTexture()) {
this->appendSampledTexture(dstTexture);
}
GrPrimitiveType primitiveType = meshes[0].primitiveType();
GrVkPipelineState* pipelineState = this->prepareDrawState(primProc, pipeline, fixedDynamicState,
dynamicStateArrays, primitiveType);
if (!pipelineState) {
return;
}
bool dynamicScissor =
pipeline.isScissorEnabled() && dynamicStateArrays && dynamicStateArrays->fScissorRects;
bool dynamicTextures = dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures;
for (int i = 0; i < meshCount; ++i) {
const GrMesh& mesh = meshes[i];
if (mesh.primitiveType() != primitiveType) {
SkDEBUGCODE(pipelineState = nullptr);
primitiveType = mesh.primitiveType();
pipelineState = this->prepareDrawState(primProc, pipeline, fixedDynamicState,
dynamicStateArrays, primitiveType);
if (!pipelineState) {
return;
}
}
if (dynamicScissor) {
GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(), fRenderTarget,
fOrigin,
dynamicStateArrays->fScissorRects[i]);
}
if (dynamicTextures) {
GrTextureProxy* const* meshProxies = dynamicStateArrays->fPrimitiveProcessorTextures +
primProc.numTextureSamplers() * i;
pipelineState->setAndBindTextures(fGpu, primProc, pipeline, meshProxies,
cbInfo.currentCmdBuf());
}
SkASSERT(pipelineState);
mesh.sendToGpu(this);
}
cbInfo.fBounds.join(bounds);
cbInfo.fIsEmpty = false;
}
void GrVkGpuRTCommandBuffer::appendSampledTexture(GrTexture* tex) {
SkASSERT(!tex->isProtected() || (fRenderTarget->isProtected() && fGpu->protectedContext()));
GrVkTexture* vkTex = static_cast<GrVkTexture*>(tex);
fCommandBufferInfos[fCurrentCmdInfo].fSampledTextures.push_back(sk_ref_sp(vkTex));
}
void GrVkGpuRTCommandBuffer::sendInstancedMeshToGpu(GrPrimitiveType,
const GrBuffer* vertexBuffer,
int vertexCount,
int baseVertex,
const GrBuffer* instanceBuffer,
int instanceCount,
int baseInstance) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
SkASSERT(!vertexBuffer || !vertexBuffer->isCpuBuffer());
SkASSERT(!instanceBuffer || !instanceBuffer->isCpuBuffer());
auto gpuVertexBuffer = static_cast<const GrGpuBuffer*>(vertexBuffer);
auto gpuInstanceBuffer = static_cast<const GrGpuBuffer*>(instanceBuffer);
this->bindGeometry(nullptr, gpuVertexBuffer, gpuInstanceBuffer);
cbInfo.currentCmdBuf()->draw(fGpu, vertexCount, instanceCount, baseVertex, baseInstance);
fGpu->stats()->incNumDraws();
}
void GrVkGpuRTCommandBuffer::sendIndexedInstancedMeshToGpu(GrPrimitiveType,
const GrBuffer* indexBuffer,
int indexCount,
int baseIndex,
const GrBuffer* vertexBuffer,
int baseVertex,
const GrBuffer* instanceBuffer,
int instanceCount,
int baseInstance,
GrPrimitiveRestart restart) {
SkASSERT(restart == GrPrimitiveRestart::kNo);
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
SkASSERT(!vertexBuffer || !vertexBuffer->isCpuBuffer());
SkASSERT(!instanceBuffer || !instanceBuffer->isCpuBuffer());
SkASSERT(!indexBuffer->isCpuBuffer());
auto gpuIndexxBuffer = static_cast<const GrGpuBuffer*>(indexBuffer);
auto gpuVertexBuffer = static_cast<const GrGpuBuffer*>(vertexBuffer);
auto gpuInstanceBuffer = static_cast<const GrGpuBuffer*>(instanceBuffer);
this->bindGeometry(gpuIndexxBuffer, gpuVertexBuffer, gpuInstanceBuffer);
cbInfo.currentCmdBuf()->drawIndexed(fGpu, indexCount, instanceCount,
baseIndex, baseVertex, baseInstance);
fGpu->stats()->incNumDraws();
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuRTCommandBuffer::executeDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable) {
GrVkRenderTarget* target = static_cast<GrVkRenderTarget*>(fRenderTarget);
GrVkImage* targetImage = target->msaaImage() ? target->msaaImage() : target;
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
VkRect2D bounds;
bounds.offset = { 0, 0 };
bounds.extent = { 0, 0 };
GrVkDrawableInfo vkInfo;
vkInfo.fSecondaryCommandBuffer = cbInfo.currentCmdBuf()->vkCommandBuffer();
vkInfo.fCompatibleRenderPass = cbInfo.fRenderPass->vkRenderPass();
SkAssertResult(cbInfo.fRenderPass->colorAttachmentIndex(&vkInfo.fColorAttachmentIndex));
vkInfo.fFormat = targetImage->imageFormat();
vkInfo.fDrawBounds = &bounds;
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
vkInfo.fImage = targetImage->image();
#else
vkInfo.fImage = VK_NULL_HANDLE;
#endif //SK_BUILD_FOR_ANDROID_FRAMEWORK
GrBackendDrawableInfo info(vkInfo);
// After we draw into the command buffer via the drawable, cached state we have may be invalid.
cbInfo.currentCmdBuf()->invalidateState();
// Also assume that the drawable produced output.
cbInfo.fIsEmpty = false;
drawable->draw(info);
fGpu->addDrawable(std::move(drawable));
if (bounds.extent.width == 0 || bounds.extent.height == 0) {
cbInfo.fBounds.join(target->getBoundsRect());
} else {
cbInfo.fBounds.join(SkRect::MakeXYWH(bounds.offset.x, bounds.offset.y,
bounds.extent.width, bounds.extent.height));
}
}