blob: 4c67e8d3f07bd4651a01dd78a4a0bf5b6d77551c [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorPriv.h"
#include "SkColorSpace_Base.h"
#include "SkColorSpaceXform.h"
#include "SkOpts.h"
static inline bool compute_gamut_xform(SkMatrix44* srcToDst, const SkMatrix44& srcToXYZ,
const SkMatrix44& dstToXYZ) {
if (!dstToXYZ.invert(srcToDst)) {
return false;
}
srcToDst->postConcat(srcToXYZ);
return true;
}
std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(const sk_sp<SkColorSpace>& srcSpace,
const sk_sp<SkColorSpace>& dstSpace) {
if (!srcSpace || !dstSpace) {
// Invalid input
return nullptr;
}
if (as_CSB(srcSpace)->colorLUT() || as_CSB(dstSpace)->colorLUT()) {
// Unimplemented
return nullptr;
}
SkMatrix44 srcToDst(SkMatrix44::kUninitialized_Constructor);
if (!compute_gamut_xform(&srcToDst, srcSpace->xyz(), dstSpace->xyz())) {
return nullptr;
}
if (SkColorSpace::k2Dot2Curve_GammaNamed == dstSpace->gammaNamed() &&
0.0f == srcToDst.getFloat(3, 0) &&
0.0f == srcToDst.getFloat(3, 1) &&
0.0f == srcToDst.getFloat(3, 2))
{
if (SkColorSpace::kSRGB_GammaNamed == srcSpace->gammaNamed()) {
return std::unique_ptr<SkColorSpaceXform>(new SkSRGBTo2Dot2Xform(srcToDst));
} else if (SkColorSpace::k2Dot2Curve_GammaNamed == srcSpace->gammaNamed()) {
return std::unique_ptr<SkColorSpaceXform>(new Sk2Dot2To2Dot2Xform(srcToDst));
}
}
return std::unique_ptr<SkColorSpaceXform>(
new SkDefaultXform(as_CSB(srcSpace)->gammas(), srcToDst, as_CSB(dstSpace)->gammas()));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static void build_src_to_dst(float srcToDstArray[12], const SkMatrix44& srcToDstMatrix) {
// Build the following row major matrix:
// rX gX bX 0
// rY gY bY 0
// rZ gZ bZ 0
// Swap R and B if necessary to make sure that we output SkPMColor order.
#ifdef SK_PMCOLOR_IS_BGRA
srcToDstArray[0] = srcToDstMatrix.getFloat(0, 2);
srcToDstArray[1] = srcToDstMatrix.getFloat(0, 1);
srcToDstArray[2] = srcToDstMatrix.getFloat(0, 0);
srcToDstArray[3] = 0.0f;
srcToDstArray[4] = srcToDstMatrix.getFloat(1, 2);
srcToDstArray[5] = srcToDstMatrix.getFloat(1, 1);
srcToDstArray[6] = srcToDstMatrix.getFloat(1, 0);
srcToDstArray[7] = 0.0f;
srcToDstArray[8] = srcToDstMatrix.getFloat(2, 2);
srcToDstArray[9] = srcToDstMatrix.getFloat(2, 1);
srcToDstArray[10] = srcToDstMatrix.getFloat(2, 0);
srcToDstArray[11] = 0.0f;
#else
srcToDstArray[0] = srcToDstMatrix.getFloat(0, 0);
srcToDstArray[1] = srcToDstMatrix.getFloat(0, 1);
srcToDstArray[2] = srcToDstMatrix.getFloat(0, 2);
srcToDstArray[3] = 0.0f;
srcToDstArray[4] = srcToDstMatrix.getFloat(1, 0);
srcToDstArray[5] = srcToDstMatrix.getFloat(1, 1);
srcToDstArray[6] = srcToDstMatrix.getFloat(1, 2);
srcToDstArray[7] = 0.0f;
srcToDstArray[8] = srcToDstMatrix.getFloat(2, 0);
srcToDstArray[9] = srcToDstMatrix.getFloat(2, 1);
srcToDstArray[10] = srcToDstMatrix.getFloat(2, 2);
srcToDstArray[11] = 0.0f;
#endif
}
SkSRGBTo2Dot2Xform::SkSRGBTo2Dot2Xform(const SkMatrix44& srcToDst)
{
build_src_to_dst(fSrcToDst, srcToDst);
}
void SkSRGBTo2Dot2Xform::xform_RGB1_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
SkOpts::color_xform_RGB1_srgb_to_2dot2(dst, src, len, fSrcToDst);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
Sk2Dot2To2Dot2Xform::Sk2Dot2To2Dot2Xform(const SkMatrix44& srcToDst)
{
build_src_to_dst(fSrcToDst, srcToDst);
}
void Sk2Dot2To2Dot2Xform::xform_RGB1_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
SkOpts::color_xform_RGB1_2dot2_to_2dot2(dst, src, len, fSrcToDst);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static inline float byte_to_float(uint8_t v) {
return ((float) v) * (1.0f / 255.0f);
}
// Expand range from 0-1 to 0-255, then convert.
static inline uint8_t clamp_normalized_float_to_byte(float v) {
// The ordering of the logic is a little strange here in order
// to make sure we convert NaNs to 0.
v = v * 255.0f;
if (v >= 254.5f) {
return 255;
} else if (v >= 0.5f) {
return (uint8_t) (v + 0.5f);
} else {
return 0;
}
}
// Interpolating lookup in a variably sized table.
static inline float interp_lut(uint8_t byte, float* table, size_t tableSize) {
float index = byte_to_float(byte) * (tableSize - 1);
float diff = index - sk_float_floor2int(index);
return table[(int) sk_float_floor2int(index)] * (1.0f - diff) +
table[(int) sk_float_ceil2int(index)] * diff;
}
// Inverse table lookup. Ex: what index corresponds to the input value? This will
// have strange results when the table is non-increasing. But any sane gamma
// function will be increasing.
// FIXME (msarett):
// This is a placeholder implementation for inverting table gammas. First, I need to
// verify if there are actually destination profiles that require this functionality.
// Next, there are certainly faster and more robust approaches to solving this problem.
// The LUT based approach in QCMS would be a good place to start.
static inline float interp_lut_inv(float input, float* table, size_t tableSize) {
if (input <= table[0]) {
return table[0];
} else if (input >= table[tableSize - 1]) {
return 1.0f;
}
for (uint32_t i = 1; i < tableSize; i++) {
if (table[i] >= input) {
// We are guaranteed that input is greater than table[i - 1].
float diff = input - table[i - 1];
float distance = table[i] - table[i - 1];
float index = (i - 1) + diff / distance;
return index / (tableSize - 1);
}
}
// Should be unreachable, since we'll return before the loop if input is
// larger than the last entry.
SkASSERT(false);
return 0.0f;
}
SkDefaultXform::SkDefaultXform(const sk_sp<SkGammas>& srcGammas, const SkMatrix44& srcToDst,
const sk_sp<SkGammas>& dstGammas)
: fSrcGammas(srcGammas)
, fSrcToDst(srcToDst)
, fDstGammas(dstGammas)
{}
void SkDefaultXform::xform_RGB1_8888(uint32_t* dst, const uint32_t* src, uint32_t len) const {
while (len-- > 0) {
// Convert to linear.
// FIXME (msarett):
// Rather than support three different strategies of transforming gamma, QCMS
// builds a 256 entry float lookup table from the gamma info. This handles
// the gamma transform and the conversion from bytes to floats. This may
// be simpler and faster than our current approach.
float srcFloats[3];
for (int i = 0; i < 3; i++) {
uint8_t byte = (*src >> (8 * i)) & 0xFF;
if (fSrcGammas) {
const SkGammaCurve& gamma = (*fSrcGammas)[i];
if (gamma.isValue()) {
srcFloats[i] = powf(byte_to_float(byte), gamma.fValue);
} else if (gamma.isTable()) {
srcFloats[i] = interp_lut(byte, gamma.fTable.get(), gamma.fTableSize);
} else {
SkASSERT(gamma.isParametric());
float component = byte_to_float(byte);
if (component < gamma.fD) {
// Y = E * X + F
srcFloats[i] = gamma.fE * component + gamma.fF;
} else {
// Y = (A * X + B)^G + C
srcFloats[i] = powf(gamma.fA * component + gamma.fB, gamma.fG) + gamma.fC;
}
}
} else {
// FIXME: Handle named gammas.
srcFloats[i] = powf(byte_to_float(byte), 2.2f);
}
}
// Convert to dst gamut.
float dstFloats[3];
dstFloats[0] = srcFloats[0] * fSrcToDst.getFloat(0, 0) +
srcFloats[1] * fSrcToDst.getFloat(1, 0) +
srcFloats[2] * fSrcToDst.getFloat(2, 0) + fSrcToDst.getFloat(3, 0);
dstFloats[1] = srcFloats[0] * fSrcToDst.getFloat(0, 1) +
srcFloats[1] * fSrcToDst.getFloat(1, 1) +
srcFloats[2] * fSrcToDst.getFloat(2, 1) + fSrcToDst.getFloat(3, 1);
dstFloats[2] = srcFloats[0] * fSrcToDst.getFloat(0, 2) +
srcFloats[1] * fSrcToDst.getFloat(1, 2) +
srcFloats[2] * fSrcToDst.getFloat(2, 2) + fSrcToDst.getFloat(3, 2);
// Convert to dst gamma.
// FIXME (msarett):
// Rather than support three different strategies of transforming inverse gamma,
// QCMS builds a large float lookup table from the gamma info. Is this faster or
// better than our approach?
for (int i = 0; i < 3; i++) {
if (fDstGammas) {
const SkGammaCurve& gamma = (*fDstGammas)[i];
if (gamma.isValue()) {
dstFloats[i] = powf(dstFloats[i], 1.0f / gamma.fValue);
} else if (gamma.isTable()) {
// FIXME (msarett):
// An inverse table lookup is particularly strange and non-optimal.
dstFloats[i] = interp_lut_inv(dstFloats[i], gamma.fTable.get(),
gamma.fTableSize);
} else {
SkASSERT(gamma.isParametric());
// FIXME (msarett):
// This is a placeholder implementation for inverting parametric gammas.
// First, I need to verify if there are actually destination profiles that
// require this functionality. Next, I need to explore other possibilities
// for this implementation. The LUT based approach in QCMS would be a good
// place to start.
// We need to take the inverse of a piecewise function. Assume that
// the gamma function is continuous, or this won't make much sense
// anyway.
// Plug in |fD| to the first equation to calculate the new piecewise
// interval. Then simply use the inverse of the original functions.
float interval = gamma.fE * gamma.fD + gamma.fF;
if (dstFloats[i] < interval) {
// X = (Y - F) / E
if (0.0f == gamma.fE) {
// The gamma curve for this segment is constant, so the inverse
// is undefined.
dstFloats[i] = 0.0f;
} else {
dstFloats[i] = (dstFloats[i] - gamma.fF) / gamma.fE;
}
} else {
// X = ((Y - C)^(1 / G) - B) / A
if (0.0f == gamma.fA || 0.0f == gamma.fG) {
// The gamma curve for this segment is constant, so the inverse
// is undefined.
dstFloats[i] = 0.0f;
} else {
dstFloats[i] = (powf(dstFloats[i] - gamma.fC, 1.0f / gamma.fG) -
gamma.fB) / gamma.fA;
}
}
}
} else {
// FIXME: Handle named gammas.
dstFloats[i] = powf(dstFloats[i], 1.0f / 2.2f);
}
}
*dst = SkPackARGB32NoCheck(((*src >> 24) & 0xFF),
clamp_normalized_float_to_byte(dstFloats[0]),
clamp_normalized_float_to_byte(dstFloats[1]),
clamp_normalized_float_to_byte(dstFloats[2]));
dst++;
src++;
}
}