blob: 94e200454607fd34dd158105dae1e941ba2d7210 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrProcessorSet.h"
#include "GrAppliedClip.h"
#include "GrCaps.h"
#include "GrProcOptInfo.h"
GrProcessorSet::GrProcessorSet(GrPaint&& paint) {
fXPFactory = paint.fXPFactory;
fFlags = 0;
if (paint.numColorFragmentProcessors() <= kMaxColorProcessors) {
fColorFragmentProcessorCnt = paint.numColorFragmentProcessors();
fFragmentProcessors.reset(paint.numTotalFragmentProcessors());
int i = 0;
for (auto& fp : paint.fColorFragmentProcessors) {
fFragmentProcessors[i++] = fp.release();
}
for (auto& fp : paint.fCoverageFragmentProcessors) {
fFragmentProcessors[i++] = fp.release();
}
if (paint.usesDistanceVectorField()) {
fFlags |= kUseDistanceVectorField_Flag;
}
} else {
SkDebugf("Insane number of color fragment processors in paint. Dropping all processors.");
fColorFragmentProcessorCnt = 0;
}
if (paint.getDisableOutputConversionToSRGB()) {
fFlags |= kDisableOutputConversionToSRGB_Flag;
}
if (paint.getAllowSRGBInputs()) {
fFlags |= kAllowSRGBInputs_Flag;
}
}
GrProcessorSet::~GrProcessorSet() {
if (this->isPendingExecution()) {
for (auto fp : fFragmentProcessors) {
fp->completedExecution();
}
} else {
for (auto fp : fFragmentProcessors) {
fp->unref();
}
}
}
void GrProcessorSet::makePendingExecution() {
SkASSERT(!(kPendingExecution_Flag & fFlags));
fFlags |= kPendingExecution_Flag;
for (int i = 0; i < fFragmentProcessors.count(); ++i) {
fFragmentProcessors[i]->addPendingExecution();
fFragmentProcessors[i]->unref();
}
}
bool GrProcessorSet::operator==(const GrProcessorSet& that) const {
if (((fFlags ^ that.fFlags) & ~kPendingExecution_Flag) ||
fFragmentProcessors.count() != that.fFragmentProcessors.count() ||
fColorFragmentProcessorCnt != that.fColorFragmentProcessorCnt) {
return false;
}
for (int i = 0; i < fFragmentProcessors.count(); ++i) {
if (!fFragmentProcessors[i]->isEqual(*that.fFragmentProcessors[i])) {
return false;
}
}
if (fXPFactory != that.fXPFactory) {
return false;
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
void GrProcessorSet::FragmentProcessorAnalysis::internalInit(const GrPipelineInput& colorInput,
const GrPipelineInput coverageInput,
const GrProcessorSet& processors,
const GrFragmentProcessor* clipFP,
const GrCaps& caps) {
GrProcOptInfo colorInfo(colorInput);
fCompatibleWithCoverageAsAlpha = !coverageInput.isLCDCoverage();
fValidInputColor = colorInput.isConstant(&fInputColor);
const GrFragmentProcessor* const* fps = processors.fFragmentProcessors.get();
colorInfo.analyzeProcessors(fps, processors.fColorFragmentProcessorCnt);
fCompatibleWithCoverageAsAlpha &= colorInfo.allProcessorsCompatibleWithCoverageAsAlpha();
fps += processors.fColorFragmentProcessorCnt;
int n = processors.numCoverageFragmentProcessors();
bool hasCoverageFP = n > 0;
fUsesLocalCoords = colorInfo.usesLocalCoords();
for (int i = 0; i < n; ++i) {
if (!fps[i]->compatibleWithCoverageAsAlpha()) {
fCompatibleWithCoverageAsAlpha = false;
// Other than tests that exercise atypical behavior we expect all coverage FPs to be
// compatible with the coverage-as-alpha optimization.
GrCapsDebugf(&caps, "Coverage FP is not compatible with coverage as alpha.\n");
}
fUsesLocalCoords |= fps[i]->usesLocalCoords();
}
if (clipFP) {
fCompatibleWithCoverageAsAlpha &= clipFP->compatibleWithCoverageAsAlpha();
fUsesLocalCoords |= clipFP->usesLocalCoords();
hasCoverageFP = true;
}
fInitialColorProcessorsToEliminate = colorInfo.initialProcessorsToEliminate(&fInputColor);
fValidInputColor |= SkToBool(fInitialColorProcessorsToEliminate);
bool opaque = colorInfo.isOpaque();
if (colorInfo.hasKnownOutputColor(&fKnownOutputColor)) {
fOutputColorType = static_cast<unsigned>(opaque ? ColorType::kOpaqueConstant
: ColorType::kConstant);
} else if (opaque) {
fOutputColorType = static_cast<unsigned>(ColorType::kOpaque);
} else {
fOutputColorType = static_cast<unsigned>(ColorType::kUnknown);
}
if (coverageInput.isLCDCoverage()) {
fOutputCoverageType = static_cast<unsigned>(CoverageType::kLCD);
} else {
fOutputCoverageType = hasCoverageFP || !coverageInput.isSolidWhite()
? static_cast<unsigned>(CoverageType::kSingleChannel)
: static_cast<unsigned>(CoverageType::kNone);
}
}
void GrProcessorSet::FragmentProcessorAnalysis::init(const GrPipelineInput& colorInput,
const GrPipelineInput coverageInput,
const GrProcessorSet& processors,
const GrAppliedClip* appliedClip,
const GrCaps& caps) {
const GrFragmentProcessor* clipFP =
appliedClip ? appliedClip->clipCoverageFragmentProcessor() : nullptr;
this->internalInit(colorInput, coverageInput, processors, clipFP, caps);
fIsInitializedWithProcessorSet = true;
}
GrProcessorSet::FragmentProcessorAnalysis::FragmentProcessorAnalysis(
const GrPipelineInput& colorInput, const GrPipelineInput coverageInput, const GrCaps& caps)
: FragmentProcessorAnalysis() {
this->internalInit(colorInput, coverageInput, GrProcessorSet(GrPaint()), nullptr, caps);
}