| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkMathPriv_DEFINED |
| #define SkMathPriv_DEFINED |
| |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkCPUTypes.h" |
| #include "include/private/base/SkTemplates.h" |
| |
| #include <cstddef> |
| #include <cstdint> |
| |
| /** |
| * Return the integer square root of value, with a bias of bitBias |
| */ |
| int32_t SkSqrtBits(int32_t value, int bitBias); |
| |
| /** Return the integer square root of n, treated as a SkFixed (16.16) |
| */ |
| static inline int32_t SkSqrt32(int32_t n) { return SkSqrtBits(n, 15); } |
| |
| /** |
| * Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) |
| */ |
| static inline int SkClampPos(int value) { |
| return value & ~(value >> 31); |
| } |
| |
| /** |
| * Stores numer/denom and numer%denom into div and mod respectively. |
| */ |
| template <typename In, typename Out> |
| inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) { |
| #ifdef SK_CPU_ARM32 |
| // If we wrote this as in the else branch, GCC won't fuse the two into one |
| // divmod call, but rather a div call followed by a divmod. Silly! This |
| // version is just as fast as calling __aeabi_[u]idivmod manually, but with |
| // prettier code. |
| // |
| // This benches as around 2x faster than the code in the else branch. |
| const In d = numer/denom; |
| *div = static_cast<Out>(d); |
| *mod = static_cast<Out>(numer-d*denom); |
| #else |
| // On x86 this will just be a single idiv. |
| *div = static_cast<Out>(numer/denom); |
| *mod = static_cast<Out>(numer%denom); |
| #endif |
| } |
| |
| /** Returns -1 if n < 0, else returns 0 |
| */ |
| #define SkExtractSign(n) ((int32_t)(n) >> 31) |
| |
| /** If sign == -1, returns -n, else sign must be 0, and returns n. |
| Typically used in conjunction with SkExtractSign(). |
| */ |
| static inline int32_t SkApplySign(int32_t n, int32_t sign) { |
| SkASSERT(sign == 0 || sign == -1); |
| return (n ^ sign) - sign; |
| } |
| |
| /** Return x with the sign of y */ |
| static inline int32_t SkCopySign32(int32_t x, int32_t y) { |
| return SkApplySign(x, SkExtractSign(x ^ y)); |
| } |
| |
| /** Given a positive value and a positive max, return the value |
| pinned against max. |
| Note: only works as long as max - value doesn't wrap around |
| @return max if value >= max, else value |
| */ |
| static inline unsigned SkClampUMax(unsigned value, unsigned max) { |
| if (value > max) { |
| value = max; |
| } |
| return value; |
| } |
| |
| // If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when |
| // we negate it (even though we *know* we're 2's complement and we'll get the same |
| // value back). So we create this helper function that casts to size_t (unsigned) first, |
| // to avoid the complaint. |
| static inline size_t sk_negate_to_size_t(int32_t value) { |
| #if defined(_MSC_VER) |
| #pragma warning(push) |
| #pragma warning(disable : 4146) // Thanks MSVC, we know what we're negating an unsigned |
| #endif |
| return -static_cast<size_t>(value); |
| #if defined(_MSC_VER) |
| #pragma warning(pop) |
| #endif |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Return a*b/255, truncating away any fractional bits. Only valid if both |
| a and b are 0..255 |
| */ |
| static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = a*b + 1; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if |
| both a and b are 0..255. The expected result equals (a * b + 254) / 255. |
| */ |
| static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = a*b + 255; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Just the rounding step in SkDiv255Round: round(value / 255) |
| */ |
| static inline unsigned SkDiv255Round(unsigned prod) { |
| prod += 128; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** |
| * Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa. |
| */ |
| #if defined(_MSC_VER) |
| #include <stdlib.h> |
| static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); } |
| #else |
| static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); } |
| #endif |
| |
| /* |
| * Return the number of set bits (i.e., the population count) in the provided uint32_t. |
| */ |
| int SkPopCount_portable(uint32_t n); |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| static inline int SkPopCount(uint32_t n) { |
| return __builtin_popcount(n); |
| } |
| #else |
| static inline int SkPopCount(uint32_t n) { |
| return SkPopCount_portable(n); |
| } |
| #endif |
| |
| /* |
| * Return the 0-based index of the nth bit set in target |
| * Returns 32 if there is no nth bit set. |
| */ |
| int SkNthSet(uint32_t target, int n); |
| |
| //! Returns the number of leading zero bits (0...32) |
| // From Hacker's Delight 2nd Edition |
| constexpr int SkCLZ_portable(uint32_t x) { |
| int n = 32; |
| uint32_t y = x >> 16; if (y != 0) {n -= 16; x = y;} |
| y = x >> 8; if (y != 0) {n -= 8; x = y;} |
| y = x >> 4; if (y != 0) {n -= 4; x = y;} |
| y = x >> 2; if (y != 0) {n -= 2; x = y;} |
| y = x >> 1; if (y != 0) {return n - 2;} |
| return n - static_cast<int>(x); |
| } |
| |
| static_assert(32 == SkCLZ_portable(0)); |
| static_assert(31 == SkCLZ_portable(1)); |
| static_assert( 1 == SkCLZ_portable(1 << 30)); |
| static_assert( 1 == SkCLZ_portable((1 << 30) | (1 << 24) | 1)); |
| static_assert( 0 == SkCLZ_portable(~0U)); |
| |
| #if defined(SK_BUILD_FOR_WIN) |
| #include <intrin.h> |
| |
| static inline int SkCLZ(uint32_t mask) { |
| if (mask) { |
| unsigned long index = 0; |
| _BitScanReverse(&index, mask); |
| // Suppress this bogus /analyze warning. The check for non-zero |
| // guarantees that _BitScanReverse will succeed. |
| #pragma warning(suppress : 6102) // Using 'index' from failed function call |
| return index ^ 0x1F; |
| } else { |
| return 32; |
| } |
| } |
| #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) |
| static inline int SkCLZ(uint32_t mask) { |
| // __builtin_clz(0) is undefined, so we have to detect that case. |
| return mask ? __builtin_clz(mask) : 32; |
| } |
| #else |
| static inline int SkCLZ(uint32_t mask) { |
| return SkCLZ_portable(mask); |
| } |
| #endif |
| |
| //! Returns the number of trailing zero bits (0...32) |
| // From Hacker's Delight 2nd Edition |
| constexpr int SkCTZ_portable(uint32_t x) { |
| return 32 - SkCLZ_portable(~x & (x - 1)); |
| } |
| |
| static_assert(32 == SkCTZ_portable(0)); |
| static_assert( 0 == SkCTZ_portable(1)); |
| static_assert(30 == SkCTZ_portable(1 << 30)); |
| static_assert( 2 == SkCTZ_portable((1 << 30) | (1 << 24) | (1 << 2))); |
| static_assert( 0 == SkCTZ_portable(~0U)); |
| |
| #if defined(SK_BUILD_FOR_WIN) |
| #include <intrin.h> |
| |
| static inline int SkCTZ(uint32_t mask) { |
| if (mask) { |
| unsigned long index = 0; |
| _BitScanForward(&index, mask); |
| // Suppress this bogus /analyze warning. The check for non-zero |
| // guarantees that _BitScanReverse will succeed. |
| #pragma warning(suppress : 6102) // Using 'index' from failed function call |
| return index; |
| } else { |
| return 32; |
| } |
| } |
| #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) |
| static inline int SkCTZ(uint32_t mask) { |
| // __builtin_ctz(0) is undefined, so we have to detect that case. |
| return mask ? __builtin_ctz(mask) : 32; |
| } |
| #else |
| static inline int SkCTZ(uint32_t mask) { |
| return SkCTZ_portable(mask); |
| } |
| #endif |
| |
| /** |
| * Returns the log2 of the specified value, were that value to be rounded up |
| * to the next power of 2. It is undefined to pass 0. Examples: |
| * SkNextLog2(1) -> 0 |
| * SkNextLog2(2) -> 1 |
| * SkNextLog2(3) -> 2 |
| * SkNextLog2(4) -> 2 |
| * SkNextLog2(5) -> 3 |
| */ |
| static inline int SkNextLog2(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ(value - 1); |
| } |
| |
| constexpr int SkNextLog2_portable(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ_portable(value - 1); |
| } |
| |
| /** |
| * Returns the log2 of the specified value, were that value to be rounded down |
| * to the previous power of 2. It is undefined to pass 0. Examples: |
| * SkPrevLog2(1) -> 0 |
| * SkPrevLog2(2) -> 1 |
| * SkPrevLog2(3) -> 1 |
| * SkPrevLog2(4) -> 2 |
| * SkPrevLog2(5) -> 2 |
| */ |
| static inline int SkPrevLog2(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ(value >> 1); |
| } |
| |
| constexpr int SkPrevLog2_portable(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ_portable(value >> 1); |
| } |
| |
| /** |
| * Returns the smallest power-of-2 that is >= the specified value. If value |
| * is already a power of 2, then it is returned unchanged. It is undefined |
| * if value is <= 0. |
| */ |
| static inline int SkNextPow2(int value) { |
| SkASSERT(value > 0); |
| return 1 << SkNextLog2(static_cast<uint32_t>(value)); |
| } |
| |
| constexpr int SkNextPow2_portable(int value) { |
| SkASSERT(value > 0); |
| return 1 << SkNextLog2_portable(static_cast<uint32_t>(value)); |
| } |
| |
| /** |
| * Returns the largest power-of-2 that is <= the specified value. If value |
| * is already a power of 2, then it is returned unchanged. It is undefined |
| * if value is <= 0. |
| */ |
| static inline int SkPrevPow2(int value) { |
| SkASSERT(value > 0); |
| return 1 << SkPrevLog2(static_cast<uint32_t>(value)); |
| } |
| |
| constexpr int SkPrevPow2_portable(int value) { |
| SkASSERT(value > 0); |
| return 1 << SkPrevLog2_portable(static_cast<uint32_t>(value)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Return the smallest power-of-2 >= n. |
| */ |
| static inline uint32_t GrNextPow2(uint32_t n) { |
| return n ? (1 << (32 - SkCLZ(n - 1))) : 1; |
| } |
| |
| /** |
| * Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t. |
| */ |
| static inline size_t GrNextSizePow2(size_t n) { |
| constexpr int kNumSizeTBits = 8 * sizeof(size_t); |
| constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1); |
| |
| if (!n) { |
| return 1; |
| } else if (n >= kHighBitSet) { |
| return n; |
| } |
| |
| n--; |
| uint32_t shift = 1; |
| while (shift < kNumSizeTBits) { |
| n |= n >> shift; |
| shift <<= 1; |
| } |
| return n + 1; |
| } |
| |
| // conservative check. will return false for very large values that "could" fit |
| template <typename T> static inline bool SkFitsInFixed(T x) { |
| return SkTAbs(x) <= 32767.0f; |
| } |
| |
| #endif |