| /* | 
 |  * Copyright 2015 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "GrAAConvexTessellator.h" | 
 | #include "SkCanvas.h" | 
 | #include "SkPath.h" | 
 | #include "SkPoint.h" | 
 | #include "SkString.h" | 
 | #include "GrPathUtils.h" | 
 |  | 
 | // Next steps: | 
 | //  add an interactive sample app slide | 
 | //  add debug check that all points are suitably far apart | 
 | //  test more degenerate cases | 
 |  | 
 | // The tolerance for fusing vertices and eliminating colinear lines (It is in device space). | 
 | static const SkScalar kClose = (SK_Scalar1 / 16); | 
 | static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | 
 |  | 
 | // tesselation tolerance values, in device space pixels | 
 | static const SkScalar kQuadTolerance = 0.2f; | 
 | static const SkScalar kCubicTolerance = 0.2f; | 
 | static const SkScalar kConicTolerance = 0.5f; | 
 |  | 
 | // dot product below which we use a round cap between curve segments | 
 | static const SkScalar kRoundCapThreshold = 0.8f; | 
 |  | 
 | static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, | 
 |                           const SkPoint& p1, const SkPoint& n1) { | 
 |     const SkPoint v = p1 - p0; | 
 |     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; | 
 |     return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; | 
 | } | 
 |  | 
 | // This is a special case version of intersect where we have the vector  | 
 | // perpendicular to the second line rather than the vector parallel to it. | 
 | static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, | 
 |                                const SkPoint& p1, const SkPoint& perp) { | 
 |     const SkPoint v = p1 - p0; | 
 |     SkScalar perpDot = n0.dot(perp); | 
 |     return v.dot(perp) / perpDot; | 
 | } | 
 |  | 
 | static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { | 
 |     SkScalar distSq = p0.distanceToSqd(p1); | 
 |     return distSq < kCloseSqd; | 
 | } | 
 |  | 
 | static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { | 
 |     SkPoint testV = test - p0; | 
 |     SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; | 
 |     return SkScalarAbs(dist); | 
 | } | 
 |  | 
 | int GrAAConvexTessellator::addPt(const SkPoint& pt, | 
 |                                  SkScalar depth, | 
 |                                  SkScalar coverage, | 
 |                                  bool movable, | 
 |                                  bool isCurve) { | 
 |     this->validate(); | 
 |  | 
 |     int index = fPts.count(); | 
 |     *fPts.push() = pt; | 
 |     *fCoverages.push() = coverage; | 
 |     *fMovable.push() = movable; | 
 |     *fIsCurve.push() = isCurve; | 
 |  | 
 |     this->validate(); | 
 |     return index; | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::popLastPt() { | 
 |     this->validate(); | 
 |  | 
 |     fPts.pop(); | 
 |     fCoverages.pop(); | 
 |     fMovable.pop(); | 
 |  | 
 |     this->validate(); | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::popFirstPtShuffle() { | 
 |     this->validate(); | 
 |  | 
 |     fPts.removeShuffle(0); | 
 |     fCoverages.removeShuffle(0); | 
 |     fMovable.removeShuffle(0); | 
 |  | 
 |     this->validate(); | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::updatePt(int index, | 
 |                                      const SkPoint& pt, | 
 |                                      SkScalar depth, | 
 |                                      SkScalar coverage) { | 
 |     this->validate(); | 
 |     SkASSERT(fMovable[index]); | 
 |  | 
 |     fPts[index] = pt; | 
 |     fCoverages[index] = coverage; | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { | 
 |     if (i0 == i1 || i1 == i2 || i2 == i0) { | 
 |         return; | 
 |     } | 
 |  | 
 |     *fIndices.push() = i0; | 
 |     *fIndices.push() = i1; | 
 |     *fIndices.push() = i2; | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::rewind() { | 
 |     fPts.rewind(); | 
 |     fCoverages.rewind(); | 
 |     fMovable.rewind(); | 
 |     fIndices.rewind(); | 
 |     fNorms.rewind(); | 
 |     fInitialRing.rewind(); | 
 |     fCandidateVerts.rewind(); | 
 | #if GR_AA_CONVEX_TESSELLATOR_VIZ | 
 |     fRings.rewind();        // TODO: leak in this case! | 
 | #else | 
 |     fRings[0].rewind(); | 
 |     fRings[1].rewind(); | 
 | #endif | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::computeBisectors() { | 
 |     fBisectors.setCount(fNorms.count()); | 
 |  | 
 |     int prev = fBisectors.count() - 1; | 
 |     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { | 
 |         fBisectors[cur] = fNorms[cur] + fNorms[prev]; | 
 |         if (!fBisectors[cur].normalize()) { | 
 |             SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide); | 
 |             fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); | 
 |             SkVector other; | 
 |             other.setOrthog(fNorms[prev], fSide); | 
 |             fBisectors[cur] += other; | 
 |             SkAssertResult(fBisectors[cur].normalize());         | 
 |         } else { | 
 |             fBisectors[cur].negate();      // make the bisector face in | 
 |         } | 
 |  | 
 |         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); | 
 |     } | 
 | } | 
 |  | 
 | // Create as many rings as we need to (up to a predefined limit) to reach the specified target | 
 | // depth. If we are in fill mode, the final ring will automatically be fanned. | 
 | bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth, | 
 |                                              SkScalar initialCoverage, SkScalar targetDepth,  | 
 |                                              SkScalar targetCoverage, Ring** finalRing) { | 
 |     static const int kMaxNumRings = 8; | 
 |  | 
 |     if (previousRing.numPts() < 3) { | 
 |         return false; | 
 |     } | 
 |     Ring* currentRing = &previousRing; | 
 |     int i; | 
 |     for (i = 0; i < kMaxNumRings; ++i) { | 
 |         Ring* nextRing = this->getNextRing(currentRing); | 
 |         SkASSERT(nextRing != currentRing); | 
 |  | 
 |         bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,  | 
 |                                           targetDepth, targetCoverage, i == 0); | 
 |         currentRing = nextRing; | 
 |         if (done) { | 
 |             break; | 
 |         } | 
 |         currentRing->init(*this); | 
 |     } | 
 |  | 
 |     if (kMaxNumRings == i) { | 
 |         // Bail if we've exceeded the amount of time we want to throw at this. | 
 |         this->terminate(*currentRing); | 
 |         return false; | 
 |     } | 
 |     bool done = currentRing->numPts() >= 3; | 
 |     if (done) { | 
 |         currentRing->init(*this); | 
 |     } | 
 |     *finalRing = currentRing; | 
 |     return done; | 
 | } | 
 |  | 
 | // The general idea here is to, conceptually, start with the original polygon and slide | 
 | // the vertices along the bisectors until the first intersection. At that | 
 | // point two of the edges collapse and the process repeats on the new polygon. | 
 | // The polygon state is captured in the Ring class while the GrAAConvexTessellator | 
 | // controls the iteration. The CandidateVerts holds the formative points for the | 
 | // next ring. | 
 | bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { | 
 |     if (!this->extractFromPath(m, path)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     SkScalar coverage = 1.0f; | 
 |     SkScalar scaleFactor = 0.0f; | 
 |     if (fStrokeWidth >= 0.0f) { | 
 |         SkASSERT(m.isSimilarity());  | 
 |         scaleFactor = m.getMaxScale(); // x and y scale are the same | 
 |         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; | 
 |         Ring outerStrokeRing; | 
 |         this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,  | 
 |                               coverage, &outerStrokeRing); | 
 |         outerStrokeRing.init(*this); | 
 |         Ring outerAARing; | 
 |         this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing); | 
 |     } else { | 
 |         Ring outerAARing; | 
 |         this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing); | 
 |     } | 
 |  | 
 |     // the bisectors are only needed for the computation of the outer ring | 
 |     fBisectors.rewind(); | 
 |     if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { | 
 |         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; | 
 |         Ring* insetStrokeRing; | 
 |         SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius; | 
 |         if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,  | 
 |                              &insetStrokeRing)) { | 
 |             Ring* insetAARing; | 
 |             this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +  | 
 |                              kAntialiasingRadius * 2, 0.0f, &insetAARing); | 
 |         } | 
 |     } else { | 
 |         Ring* insetAARing; | 
 |         this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing); | 
 |     } | 
 |  | 
 |     SkDEBUGCODE(this->validate();) | 
 |     return true; | 
 | } | 
 |  | 
 | SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { | 
 |     SkASSERT(edgeIdx < fNorms.count()); | 
 |  | 
 |     SkPoint v = p - fPts[edgeIdx]; | 
 |     SkScalar depth = -fNorms[edgeIdx].dot(v); | 
 |     return depth; | 
 | } | 
 |  | 
 | // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies | 
 | // along the 'bisector' from the 'startIdx'-th point. | 
 | bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, | 
 |                                                    const SkVector& bisector, | 
 |                                                    int edgeIdx, | 
 |                                                    SkScalar desiredDepth, | 
 |                                                    SkPoint* result) const { | 
 |     const SkPoint& norm = fNorms[edgeIdx]; | 
 |  | 
 |     // First find the point where the edge and the bisector intersect | 
 |     SkPoint newP; | 
 |  | 
 |     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); | 
 |     if (SkScalarNearlyEqual(t, 0.0f)) { | 
 |         // the start point was one of the original ring points | 
 |         SkASSERT(startIdx < fPts.count()); | 
 |         newP = fPts[startIdx]; | 
 |     } else if (t < 0.0f) { | 
 |         newP = bisector; | 
 |         newP.scale(t); | 
 |         newP += fPts[startIdx]; | 
 |     } else { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Then offset along the bisector from that point the correct distance | 
 |     SkScalar dot = bisector.dot(norm); | 
 |     t = -desiredDepth / dot; | 
 |     *result = bisector; | 
 |     result->scale(t); | 
 |     *result += newP; | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { | 
 |     SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); | 
 |  | 
 |     // Outer ring: 3*numPts | 
 |     // Middle ring: numPts | 
 |     // Presumptive inner ring: numPts | 
 |     this->reservePts(5*path.countPoints()); | 
 |     // Outer ring: 12*numPts | 
 |     // Middle ring: 0 | 
 |     // Presumptive inner ring: 6*numPts + 6 | 
 |     fIndices.setReserve(18*path.countPoints() + 6); | 
 |  | 
 |     fNorms.setReserve(path.countPoints()); | 
 |  | 
 |     // TODO: is there a faster way to extract the points from the path? Perhaps | 
 |     // get all the points via a new entry point, transform them all in bulk | 
 |     // and then walk them to find duplicates? | 
 |     SkPath::Iter iter(path, true); | 
 |     SkPoint pts[4]; | 
 |     SkPath::Verb verb; | 
 |     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 
 |         switch (verb) { | 
 |             case SkPath::kLine_Verb: | 
 |                 this->lineTo(m, pts[1], false); | 
 |                 break; | 
 |             case SkPath::kQuad_Verb: | 
 |                 this->quadTo(m, pts); | 
 |                 break; | 
 |             case SkPath::kCubic_Verb: | 
 |                 this->cubicTo(m, pts); | 
 |                 break; | 
 |             case SkPath::kConic_Verb: | 
 |                 this->conicTo(m, pts, iter.conicWeight()); | 
 |                 break; | 
 |             case SkPath::kMove_Verb: | 
 |             case SkPath::kClose_Verb: | 
 |             case SkPath::kDone_Verb: | 
 |                 break; | 
 |         } | 
 |     } | 
 |  | 
 |     if (this->numPts() < 2) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // check if last point is a duplicate of the first point. If so, remove it. | 
 |     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { | 
 |         this->popLastPt(); | 
 |         fNorms.pop(); | 
 |     } | 
 |  | 
 |     SkASSERT(fPts.count() == fNorms.count()+1); | 
 |     if (this->numPts() >= 3) { | 
 |         if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { | 
 |             // The last point is on the line from the second to last to the first point. | 
 |             this->popLastPt(); | 
 |             fNorms.pop(); | 
 |         } | 
 |  | 
 |         *fNorms.push() = fPts[0] - fPts.top(); | 
 |         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | 
 |         SkASSERT(len > 0.0f); | 
 |         SkASSERT(fPts.count() == fNorms.count()); | 
 |     } | 
 |  | 
 |     if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { | 
 |         // The first point is on the line from the last to the second. | 
 |         this->popFirstPtShuffle(); | 
 |         fNorms.removeShuffle(0); | 
 |         fNorms[0] = fPts[1] - fPts[0]; | 
 |         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); | 
 |         SkASSERT(len > 0.0f); | 
 |         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); | 
 |     } | 
 |  | 
 |     if (this->numPts() >= 3) { | 
 |         // Check the cross product of the final trio | 
 |         SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); | 
 |         if (cross > 0.0f) { | 
 |             fSide = SkPoint::kRight_Side; | 
 |         } else { | 
 |             fSide = SkPoint::kLeft_Side; | 
 |         } | 
 |  | 
 |         // Make all the normals face outwards rather than along the edge | 
 |         for (int cur = 0; cur < fNorms.count(); ++cur) { | 
 |             fNorms[cur].setOrthog(fNorms[cur], fSide); | 
 |             SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | 
 |         } | 
 |  | 
 |         this->computeBisectors(); | 
 |     } else if (this->numPts() == 2) { | 
 |         // We've got two points, so we're degenerate.  | 
 |         if (fStrokeWidth < 0.0f) { | 
 |             // it's a fill, so we don't need to worry about degenerate paths | 
 |             return false; | 
 |         } | 
 |         // For stroking, we still need to process the degenerate path, so fix it up | 
 |         fSide = SkPoint::kLeft_Side; | 
 |  | 
 |         // Make all the normals face outwards rather than along the edge | 
 |         for (int cur = 0; cur < fNorms.count(); ++cur) { | 
 |             fNorms[cur].setOrthog(fNorms[cur], fSide); | 
 |             SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); | 
 |         } | 
 |  | 
 |         fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); | 
 |         // we won't actually use the bisectors, so just push zeroes | 
 |         fBisectors.push(SkPoint::Make(0.0, 0.0)); | 
 |         fBisectors.push(SkPoint::Make(0.0, 0.0)); | 
 |     } else { | 
 |         return false; | 
 |     } | 
 |  | 
 |     fCandidateVerts.setReserve(this->numPts()); | 
 |     fInitialRing.setReserve(this->numPts()); | 
 |     for (int i = 0; i < this->numPts(); ++i) { | 
 |         fInitialRing.addIdx(i, i); | 
 |     } | 
 |     fInitialRing.init(fNorms, fBisectors); | 
 |  | 
 |     this->validate(); | 
 |     return true; | 
 | } | 
 |  | 
 | GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { | 
 | #if GR_AA_CONVEX_TESSELLATOR_VIZ | 
 |     Ring* ring = *fRings.push() = new Ring; | 
 |     ring->setReserve(fInitialRing.numPts()); | 
 |     ring->rewind(); | 
 |     return ring; | 
 | #else | 
 |     // Flip flop back and forth between fRings[0] & fRings[1] | 
 |     int nextRing = (lastRing == &fRings[0]) ? 1 : 0; | 
 |     fRings[nextRing].setReserve(fInitialRing.numPts()); | 
 |     fRings[nextRing].rewind(); | 
 |     return &fRings[nextRing]; | 
 | #endif | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::fanRing(const Ring& ring) { | 
 |     // fan out from point 0 | 
 |     int startIdx = ring.index(0); | 
 |     for (int cur = ring.numPts() - 2; cur >= 0; --cur) { | 
 |         this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); | 
 |     } | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,  | 
 |                                             SkScalar coverage, Ring* nextRing) { | 
 |     const int numPts = previousRing.numPts(); | 
 |     if (numPts == 0) { | 
 |         return; | 
 |     } | 
 |  | 
 |     int prev = numPts - 1; | 
 |     int lastPerpIdx = -1, firstPerpIdx = -1; | 
 |  | 
 |     const SkScalar outsetSq = SkScalarMul(outset, outset); | 
 |     SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); | 
 |     miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); | 
 |     for (int cur = 0; cur < numPts; ++cur) { | 
 |         int originalIdx = previousRing.index(cur); | 
 |         // For each vertex of the original polygon we add at least two points to the  | 
 |         // outset polygon - one extending perpendicular to each impinging edge. Connecting these | 
 |         // two points yields a bevel join. We need one additional point for a mitered join, and  | 
 |         // a round join requires one or more points depending upon curvature. | 
 |  | 
 |         // The perpendicular point for the last edge | 
 |         SkPoint normal1 = previousRing.norm(prev); | 
 |         SkPoint perp1 = normal1; | 
 |         perp1.scale(outset); | 
 |         perp1 += this->point(originalIdx); | 
 |  | 
 |         // The perpendicular point for the next edge. | 
 |         SkPoint normal2 = previousRing.norm(cur); | 
 |         SkPoint perp2 = normal2; | 
 |         perp2.scale(outset); | 
 |         perp2 += fPts[originalIdx]; | 
 |  | 
 |         bool isCurve = fIsCurve[originalIdx]; | 
 |  | 
 |         // We know it isn't a duplicate of the prior point (since it and this | 
 |         // one are just perpendicular offsets from the non-merged polygon points) | 
 |         int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); | 
 |         nextRing->addIdx(perp1Idx, originalIdx); | 
 |  | 
 |         int perp2Idx; | 
 |         // For very shallow angles all the corner points could fuse. | 
 |         if (duplicate_pt(perp2, this->point(perp1Idx))) { | 
 |             perp2Idx = perp1Idx; | 
 |         } else { | 
 |             perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); | 
 |         } | 
 |  | 
 |         if (perp2Idx != perp1Idx) { | 
 |             if (isCurve) { | 
 |                 // bevel or round depending upon curvature | 
 |                 SkScalar dotProd = normal1.dot(normal2); | 
 |                 if (dotProd < kRoundCapThreshold) { | 
 |                     // Currently we "round" by creating a single extra point, which produces | 
 |                     // good results for common cases. For thick strokes with high curvature, we will | 
 |                     // need to add more points; for the time being we simply fall back to software | 
 |                     // rendering for thick strokes. | 
 |                     SkPoint miter = previousRing.bisector(cur); | 
 |                     miter.setLength(-outset); | 
 |                     miter += fPts[originalIdx]; | 
 |  | 
 |                     // For very shallow angles all the corner points could fuse | 
 |                     if (!duplicate_pt(miter, this->point(perp1Idx))) { | 
 |                         int miterIdx; | 
 |                         miterIdx = this->addPt(miter, -outset, coverage, false, false); | 
 |                         nextRing->addIdx(miterIdx, originalIdx); | 
 |                         // The two triangles for the corner | 
 |                         this->addTri(originalIdx, perp1Idx, miterIdx); | 
 |                         this->addTri(originalIdx, miterIdx, perp2Idx); | 
 |                     } | 
 |                 } else { | 
 |                     this->addTri(originalIdx, perp1Idx, perp2Idx); | 
 |                 } | 
 |             } else { | 
 |                 switch (fJoin) { | 
 |                     case SkPaint::Join::kMiter_Join: { | 
 |                         // The bisector outset point | 
 |                         SkPoint miter = previousRing.bisector(cur); | 
 |                         SkScalar dotProd = normal1.dot(normal2); | 
 |                         SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd); | 
 |                         SkScalar lengthSq = outsetSq / sinHalfAngleSq; | 
 |                         if (lengthSq > miterLimitSq) { | 
 |                             // just bevel it | 
 |                             this->addTri(originalIdx, perp1Idx, perp2Idx); | 
 |                             break; | 
 |                         } | 
 |                         miter.setLength(-SkScalarSqrt(lengthSq)); | 
 |                         miter += fPts[originalIdx]; | 
 |  | 
 |                         // For very shallow angles all the corner points could fuse | 
 |                         if (!duplicate_pt(miter, this->point(perp1Idx))) { | 
 |                             int miterIdx; | 
 |                             miterIdx = this->addPt(miter, -outset, coverage, false, false); | 
 |                             nextRing->addIdx(miterIdx, originalIdx); | 
 |                             // The two triangles for the corner | 
 |                             this->addTri(originalIdx, perp1Idx, miterIdx); | 
 |                             this->addTri(originalIdx, miterIdx, perp2Idx); | 
 |                         } | 
 |                         break; | 
 |                     } | 
 |                     case SkPaint::Join::kBevel_Join: | 
 |                         this->addTri(originalIdx, perp1Idx, perp2Idx); | 
 |                         break; | 
 |                     default: | 
 |                         // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is  | 
 |                         // only willing to draw mitered or beveled, so we should never get here. | 
 |                         SkASSERT(false); | 
 |                 } | 
 |             } | 
 |  | 
 |             nextRing->addIdx(perp2Idx, originalIdx); | 
 |         } | 
 |  | 
 |         if (0 == cur) { | 
 |             // Store the index of the first perpendicular point to finish up | 
 |             firstPerpIdx = perp1Idx; | 
 |             SkASSERT(-1 == lastPerpIdx); | 
 |         } else { | 
 |             // The triangles for the previous edge | 
 |             int prevIdx = previousRing.index(prev); | 
 |             this->addTri(prevIdx, perp1Idx, originalIdx); | 
 |             this->addTri(prevIdx, lastPerpIdx, perp1Idx); | 
 |         } | 
 |  | 
 |         // Track the last perpendicular outset point so we can construct the | 
 |         // trailing edge triangles. | 
 |         lastPerpIdx = perp2Idx; | 
 |         prev = cur; | 
 |     } | 
 |  | 
 |     // pick up the final edge rect | 
 |     int lastIdx = previousRing.index(numPts - 1); | 
 |     this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); | 
 |     this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); | 
 |  | 
 |     this->validate(); | 
 | } | 
 |  | 
 | // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead | 
 | // and fan it. | 
 | void GrAAConvexTessellator::terminate(const Ring& ring) { | 
 |     if (fStrokeWidth < 0.0f) { | 
 |         this->fanRing(ring); | 
 |     } | 
 | } | 
 |  | 
 | static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,  | 
 |                                 SkScalar targetDepth, SkScalar targetCoverage) { | 
 |     if (SkScalarNearlyEqual(initialDepth, targetDepth)) { | 
 |         return targetCoverage; | 
 |     } | 
 |     SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *  | 
 |             (targetCoverage - initialCoverage) + initialCoverage; | 
 |     return SkScalarClampMax(result, 1.0f); | 
 | } | 
 |  | 
 | // return true when processing is complete | 
 | bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,  | 
 |                                             SkScalar initialDepth, SkScalar initialCoverage,  | 
 |                                             SkScalar targetDepth, SkScalar targetCoverage,  | 
 |                                             bool forceNew) { | 
 |     bool done = false; | 
 |  | 
 |     fCandidateVerts.rewind(); | 
 |  | 
 |     // Loop through all the points in the ring and find the intersection with the smallest depth | 
 |     SkScalar minDist = SK_ScalarMax, minT = 0.0f; | 
 |     int minEdgeIdx = -1; | 
 |  | 
 |     for (int cur = 0; cur < lastRing.numPts(); ++cur) { | 
 |         int next = (cur + 1) % lastRing.numPts(); | 
 |         SkScalar t = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur), | 
 |                                this->point(lastRing.index(next)), lastRing.bisector(next)); | 
 |         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); | 
 |  | 
 |         if (minDist > dist) { | 
 |             minDist = dist; | 
 |             minT = t; | 
 |             minEdgeIdx = cur; | 
 |         } | 
 |     } | 
 |  | 
 |     if (minEdgeIdx == -1) { | 
 |         return false; | 
 |     } | 
 |     SkPoint newPt = lastRing.bisector(minEdgeIdx); | 
 |     newPt.scale(minT); | 
 |     newPt += this->point(lastRing.index(minEdgeIdx)); | 
 |  | 
 |     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); | 
 |     if (depth >= targetDepth) { | 
 |         // None of the bisectors intersect before reaching the desired depth. | 
 |         // Just step them all to the desired depth | 
 |         depth = targetDepth; | 
 |         done = true; | 
 |     } | 
 |  | 
 |     // 'dst' stores where each point in the last ring maps to/transforms into | 
 |     // in the next ring. | 
 |     SkTDArray<int> dst; | 
 |     dst.setCount(lastRing.numPts()); | 
 |  | 
 |     // Create the first point (who compares with no one) | 
 |     if (!this->computePtAlongBisector(lastRing.index(0), | 
 |                                       lastRing.bisector(0), | 
 |                                       lastRing.origEdgeID(0), | 
 |                                       depth, &newPt)) { | 
 |         this->terminate(lastRing); | 
 |         return true; | 
 |     } | 
 |     dst[0] = fCandidateVerts.addNewPt(newPt, | 
 |                                       lastRing.index(0), lastRing.origEdgeID(0), | 
 |                                       !this->movable(lastRing.index(0))); | 
 |  | 
 |     // Handle the middle points (who only compare with the prior point) | 
 |     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { | 
 |         if (!this->computePtAlongBisector(lastRing.index(cur), | 
 |                                           lastRing.bisector(cur), | 
 |                                           lastRing.origEdgeID(cur), | 
 |                                           depth, &newPt)) { | 
 |             this->terminate(lastRing); | 
 |             return true; | 
 |         } | 
 |         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { | 
 |             dst[cur] = fCandidateVerts.addNewPt(newPt, | 
 |                                                 lastRing.index(cur), lastRing.origEdgeID(cur), | 
 |                                                 !this->movable(lastRing.index(cur))); | 
 |         } else { | 
 |             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 
 |         } | 
 |     } | 
 |  | 
 |     // Check on the last point (handling the wrap around) | 
 |     int cur = lastRing.numPts()-1; | 
 |     if  (!this->computePtAlongBisector(lastRing.index(cur), | 
 |                                        lastRing.bisector(cur), | 
 |                                        lastRing.origEdgeID(cur), | 
 |                                        depth, &newPt)) { | 
 |         this->terminate(lastRing); | 
 |         return true; | 
 |     } | 
 |     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); | 
 |     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); | 
 |  | 
 |     if (!dupPrev && !dupNext) { | 
 |         dst[cur] = fCandidateVerts.addNewPt(newPt, | 
 |                                             lastRing.index(cur), lastRing.origEdgeID(cur), | 
 |                                             !this->movable(lastRing.index(cur))); | 
 |     } else if (dupPrev && !dupNext) { | 
 |         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 
 |     } else if (!dupPrev && dupNext) { | 
 |         dst[cur] = fCandidateVerts.fuseWithNext(); | 
 |     } else { | 
 |         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); | 
 |  | 
 |         if (!dupPrevVsNext) { | 
 |             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); | 
 |         } else { | 
 |             const int fused = fCandidateVerts.fuseWithBoth(); | 
 |             dst[cur] = fused; | 
 |             const int targetIdx = dst[cur - 1]; | 
 |             for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) { | 
 |                 dst[i] = fused; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // Fold the new ring's points into the global pool | 
 |     for (int i = 0; i < fCandidateVerts.numPts(); ++i) { | 
 |         int newIdx; | 
 |         if (fCandidateVerts.needsToBeNew(i) || forceNew) { | 
 |             // if the originating index is still valid then this point wasn't  | 
 |             // fused (and is thus movable) | 
 |             SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,  | 
 |                                                  targetDepth, targetCoverage); | 
 |             newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, | 
 |                                  fCandidateVerts.originatingIdx(i) != -1, false); | 
 |         } else { | 
 |             SkASSERT(fCandidateVerts.originatingIdx(i) != -1); | 
 |             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth, | 
 |                            targetCoverage); | 
 |             newIdx = fCandidateVerts.originatingIdx(i); | 
 |         } | 
 |  | 
 |         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); | 
 |     } | 
 |  | 
 |     // 'dst' currently has indices into the ring. Remap these to be indices | 
 |     // into the global pool since the triangulation operates in that space. | 
 |     for (int i = 0; i < dst.count(); ++i) { | 
 |         dst[i] = nextRing->index(dst[i]); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < lastRing.numPts(); ++i) { | 
 |         int next = (i + 1) % lastRing.numPts(); | 
 |  | 
 |         this->addTri(lastRing.index(i), lastRing.index(next), dst[next]); | 
 |         this->addTri(lastRing.index(i), dst[next], dst[i]); | 
 |     } | 
 |  | 
 |     if (done && fStrokeWidth < 0.0f) { | 
 |         // fill | 
 |         this->fanRing(*nextRing); | 
 |     } | 
 |  | 
 |     if (nextRing->numPts() < 3) { | 
 |         done = true; | 
 |     } | 
 |     return done; | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::validate() const { | 
 |     SkASSERT(fPts.count() == fMovable.count()); | 
 |     SkASSERT(0 == (fIndices.count() % 3)); | 
 | } | 
 |  | 
 | ////////////////////////////////////////////////////////////////////////////// | 
 | void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { | 
 |     this->computeNormals(tess); | 
 |     this->computeBisectors(tess); | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, | 
 |                                        const SkTDArray<SkVector>& bisectors) { | 
 |     for (int i = 0; i < fPts.count(); ++i) { | 
 |         fPts[i].fNorm = norms[i]; | 
 |         fPts[i].fBisector = bisectors[i]; | 
 |     } | 
 | } | 
 |  | 
 | // Compute the outward facing normal at each vertex. | 
 | void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { | 
 |     for (int cur = 0; cur < fPts.count(); ++cur) { | 
 |         int next = (cur + 1) % fPts.count(); | 
 |  | 
 |         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); | 
 |         SkPoint::Normalize(&fPts[cur].fNorm); | 
 |         fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); | 
 |     } | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) { | 
 |     int prev = fPts.count() - 1; | 
 |     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { | 
 |         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; | 
 |         if (!fPts[cur].fBisector.normalize()) { | 
 |             SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side()); | 
 |             fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side()); | 
 |             SkVector other; | 
 |             other.setOrthog(fPts[prev].fNorm, tess.side()); | 
 |             fPts[cur].fBisector += other; | 
 |             SkAssertResult(fPts[cur].fBisector.normalize()); | 
 |         } else { | 
 |             fPts[cur].fBisector.negate();      // make the bisector face in | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | ////////////////////////////////////////////////////////////////////////////// | 
 | #ifdef SK_DEBUG | 
 | // Is this ring convex? | 
 | bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { | 
 |     if (fPts.count() < 3) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); | 
 |     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); | 
 |     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; | 
 |     SkScalar maxDot = minDot; | 
 |  | 
 |     prev = cur; | 
 |     for (int i = 1; i < fPts.count(); ++i) { | 
 |         int next = (i + 1) % fPts.count(); | 
 |  | 
 |         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); | 
 |         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; | 
 |  | 
 |         minDot = SkMinScalar(minDot, dot); | 
 |         maxDot = SkMaxScalar(maxDot, dot); | 
 |  | 
 |         prev = cur; | 
 |     } | 
 |  | 
 |     if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { | 
 |         maxDot = 0; | 
 |     } | 
 |     if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { | 
 |         minDot = 0; | 
 |     } | 
 |     return (maxDot >= 0.0f) == (minDot >= 0.0f); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { | 
 |     if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { | 
 |         return; | 
 |     } | 
 |  | 
 |     SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); | 
 |     if (this->numPts() >= 2 &&  | 
 |         abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { | 
 |         // The old last point is on the line from the second to last to the new point | 
 |         this->popLastPt(); | 
 |         fNorms.pop(); | 
 |         fIsCurve.pop(); | 
 |     } | 
 |     SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; | 
 |     this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); | 
 |     if (this->numPts() > 1) { | 
 |         *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; | 
 |         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); | 
 |         SkASSERT(len > 0.0f); | 
 |         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); | 
 |     } | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { | 
 |     m.mapPoints(&p, 1); | 
 |     this->lineTo(p, isCurve); | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { | 
 |     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); | 
 |     fPointBuffer.setReserve(maxCount); | 
 |     SkPoint* target = fPointBuffer.begin(); | 
 |     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],  | 
 |             kQuadTolerance, &target, maxCount); | 
 |     fPointBuffer.setCount(count); | 
 |     for (int i = 0; i < count; i++) { | 
 |         lineTo(fPointBuffer[i], true); | 
 |     } | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { | 
 |     SkPoint transformed[3]; | 
 |     transformed[0] = pts[0]; | 
 |     transformed[1] = pts[1]; | 
 |     transformed[2] = pts[2]; | 
 |     m.mapPoints(transformed, 3); | 
 |     quadTo(transformed); | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { | 
 |     m.mapPoints(pts, 4); | 
 |     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); | 
 |     fPointBuffer.setReserve(maxCount); | 
 |     SkPoint* target = fPointBuffer.begin(); | 
 |     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],  | 
 |             kCubicTolerance, &target, maxCount); | 
 |     fPointBuffer.setCount(count); | 
 |     for (int i = 0; i < count; i++) { | 
 |         lineTo(fPointBuffer[i], true); | 
 |     } | 
 | } | 
 |  | 
 | // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h | 
 | #include "SkGeometry.h" | 
 |  | 
 | void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) { | 
 |     m.mapPoints(pts, 3); | 
 |     SkAutoConicToQuads quadder; | 
 |     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); | 
 |     SkPoint lastPoint = *(quads++); | 
 |     int count = quadder.countQuads(); | 
 |     for (int i = 0; i < count; ++i) { | 
 |         SkPoint quadPts[3]; | 
 |         quadPts[0] = lastPoint; | 
 |         quadPts[1] = quads[0]; | 
 |         quadPts[2] = i == count - 1 ? pts[2] : quads[1]; | 
 |         quadTo(quadPts); | 
 |         lastPoint = quadPts[2]; | 
 |         quads += 2; | 
 |     } | 
 | } | 
 |  | 
 | ////////////////////////////////////////////////////////////////////////////// | 
 | #if GR_AA_CONVEX_TESSELLATOR_VIZ | 
 | static const SkScalar kPointRadius = 0.02f; | 
 | static const SkScalar kArrowStrokeWidth = 0.0f; | 
 | static const SkScalar kArrowLength = 0.2f; | 
 | static const SkScalar kEdgeTextSize = 0.1f; | 
 | static const SkScalar kPointTextSize = 0.02f; | 
 |  | 
 | static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { | 
 |     SkPaint paint; | 
 |     SkASSERT(paramValue <= 1.0f); | 
 |     int gs = int(255*paramValue); | 
 |     paint.setARGB(255, gs, gs, gs); | 
 |  | 
 |     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); | 
 |  | 
 |     if (stroke) { | 
 |         SkPaint stroke; | 
 |         stroke.setColor(SK_ColorYELLOW); | 
 |         stroke.setStyle(SkPaint::kStroke_Style); | 
 |         stroke.setStrokeWidth(kPointRadius/3.0f); | 
 |         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);  | 
 |     } | 
 | } | 
 |  | 
 | static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { | 
 |     SkPaint p; | 
 |     p.setColor(color); | 
 |  | 
 |     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); | 
 | } | 
 |  | 
 | static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, | 
 |                        SkScalar len, SkColor color) { | 
 |     SkPaint paint; | 
 |     paint.setColor(color); | 
 |     paint.setStrokeWidth(kArrowStrokeWidth); | 
 |     paint.setStyle(SkPaint::kStroke_Style); | 
 |  | 
 |     canvas->drawLine(p.fX, p.fY, | 
 |                      p.fX + len * n.fX, p.fY + len * n.fY, | 
 |                      paint); | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { | 
 |     SkPaint paint; | 
 |     paint.setTextSize(kEdgeTextSize); | 
 |  | 
 |     for (int cur = 0; cur < fPts.count(); ++cur) { | 
 |         int next = (cur + 1) % fPts.count(); | 
 |  | 
 |         draw_line(canvas, | 
 |                   tess.point(fPts[cur].fIndex), | 
 |                   tess.point(fPts[next].fIndex), | 
 |                   SK_ColorGREEN); | 
 |  | 
 |         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); | 
 |         mid.scale(0.5f); | 
 |  | 
 |         if (fPts.count()) { | 
 |             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); | 
 |             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; | 
 |             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; | 
 |         } | 
 |  | 
 |         SkString num; | 
 |         num.printf("%d", this->origEdgeID(cur)); | 
 |         canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); | 
 |  | 
 |         if (fPts.count()) { | 
 |             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, | 
 |                        kArrowLength, SK_ColorBLUE); | 
 |         } | 
 |     }     | 
 | } | 
 |  | 
 | void GrAAConvexTessellator::draw(SkCanvas* canvas) const { | 
 |     for (int i = 0; i < fIndices.count(); i += 3) { | 
 |         SkASSERT(fIndices[i] < this->numPts()) ; | 
 |         SkASSERT(fIndices[i+1] < this->numPts()) ; | 
 |         SkASSERT(fIndices[i+2] < this->numPts()) ; | 
 |  | 
 |         draw_line(canvas, | 
 |                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), | 
 |                   SK_ColorBLACK); | 
 |         draw_line(canvas, | 
 |                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), | 
 |                   SK_ColorBLACK); | 
 |         draw_line(canvas, | 
 |                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), | 
 |                   SK_ColorBLACK); | 
 |     } | 
 |  | 
 |     fInitialRing.draw(canvas, *this); | 
 |     for (int i = 0; i < fRings.count(); ++i) { | 
 |         fRings[i]->draw(canvas, *this); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < this->numPts(); ++i) { | 
 |         draw_point(canvas, | 
 |                    this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),  | 
 |                    !this->movable(i)); | 
 |  | 
 |         SkPaint paint; | 
 |         paint.setTextSize(kPointTextSize); | 
 |         paint.setTextAlign(SkPaint::kCenter_Align); | 
 |         if (this->depth(i) <= -kAntialiasingRadius) { | 
 |             paint.setColor(SK_ColorWHITE); | 
 |         } | 
 |  | 
 |         SkString num; | 
 |         num.printf("%d", i); | 
 |         canvas->drawText(num.c_str(), num.size(),  | 
 |                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),  | 
 |                          paint); | 
 |     } | 
 | } | 
 |  | 
 | #endif | 
 |  |