blob: 2513cd013e3a3c397942565cb7bba43b4b01a9ed [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkPictureData.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkTypeface.h"
#include "include/private/SkTo.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkPicturePriv.h"
#include "src/core/SkPictureRecord.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkTextBlobPriv.h"
#include "src/core/SkVerticesPriv.h"
#include "src/core/SkWriteBuffer.h"
#include <new>
template <typename T> int SafeCount(const T* obj) {
return obj ? obj->count() : 0;
}
SkPictureData::SkPictureData(const SkPictInfo& info)
: fInfo(info) {}
void SkPictureData::initForPlayback() const {
// ensure that the paths bounds are pre-computed
for (int i = 0; i < fPaths.count(); i++) {
fPaths[i].updateBoundsCache();
}
}
SkPictureData::SkPictureData(const SkPictureRecord& record,
const SkPictInfo& info)
: fPictures(record.getPictures())
, fDrawables(record.getDrawables())
, fTextBlobs(record.getTextBlobs())
, fVertices(record.getVertices())
, fImages(record.getImages())
, fInfo(info) {
fOpData = record.opData();
fPaints = record.fPaints;
fPaths.reset(record.fPaths.count());
record.fPaths.foreach([this](const SkPath& path, int n) {
// These indices are logically 1-based, but we need to serialize them
// 0-based to keep the deserializing SkPictureData::getPath() working.
fPaths[n-1] = path;
});
this->initForPlayback();
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "include/core/SkStream.h"
static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) {
size_t size = 4; // for 'count'
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (nullptr == name || 0 == *name) {
size += SkWStream::SizeOfPackedUInt(0);
} else {
size_t len = strlen(name);
size += SkWStream::SizeOfPackedUInt(len);
size += len;
}
}
return size;
}
static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, size_t size) {
buffer.writeUInt(tag);
buffer.writeUInt(SkToU32(size));
}
static void write_tag_size(SkWStream* stream, uint32_t tag, size_t size) {
stream->write32(tag);
stream->write32(SkToU32(size));
}
void SkPictureData::WriteFactories(SkWStream* stream, const SkFactorySet& rec) {
int count = rec.count();
SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count);
SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get();
rec.copyToArray(array);
size_t size = compute_chunk_size(array, count);
// TODO: write_tag_size should really take a size_t
write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size);
SkDEBUGCODE(size_t start = stream->bytesWritten());
stream->write32(count);
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (nullptr == name || 0 == *name) {
stream->writePackedUInt(0);
} else {
size_t len = strlen(name);
stream->writePackedUInt(len);
stream->write(name, len);
}
}
SkASSERT(size == (stream->bytesWritten() - start));
}
void SkPictureData::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec,
const SkSerialProcs& procs) {
int count = rec.count();
write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count);
SkAutoSTMalloc<16, SkTypeface*> storage(count);
SkTypeface** array = (SkTypeface**)storage.get();
rec.copyToArray((SkRefCnt**)array);
for (int i = 0; i < count; i++) {
SkTypeface* tf = array[i];
if (procs.fTypefaceProc) {
auto data = procs.fTypefaceProc(tf, procs.fTypefaceCtx);
if (data) {
stream->write(data->data(), data->size());
continue;
}
}
array[i]->serialize(stream);
}
}
void SkPictureData::flattenToBuffer(SkWriteBuffer& buffer, bool textBlobsOnly) const {
if (!textBlobsOnly) {
int numPaints = fPaints.count();
if (numPaints > 0) {
write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, numPaints);
for (const SkPaint& paint : fPaints) {
buffer.writePaint(paint);
}
}
int numPaths = fPaths.count();
if (numPaths > 0) {
write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, numPaths);
buffer.writeInt(numPaths);
for (const SkPath& path : fPaths) {
buffer.writePath(path);
}
}
}
if (!fTextBlobs.empty()) {
write_tag_size(buffer, SK_PICT_TEXTBLOB_BUFFER_TAG, fTextBlobs.count());
for (const auto& blob : fTextBlobs) {
SkTextBlobPriv::Flatten(*blob, buffer);
}
}
if (!textBlobsOnly) {
if (!fVertices.empty()) {
write_tag_size(buffer, SK_PICT_VERTICES_BUFFER_TAG, fVertices.count());
for (const auto& vert : fVertices) {
vert->priv().encode(buffer);
}
}
if (!fImages.empty()) {
write_tag_size(buffer, SK_PICT_IMAGE_BUFFER_TAG, fImages.count());
for (const auto& img : fImages) {
buffer.writeImage(img.get());
}
}
}
}
// SkPictureData::serialize() will write out paints, and then write out an array of typefaces
// (unique set). However, paint's serializer will respect SerialProcs, which can cause us to
// call that custom typefaceproc on *every* typeface, not just on the unique ones. To avoid this,
// we ignore the custom proc (here) when we serialize the paints, and then do respect it when
// we serialize the typefaces.
static SkSerialProcs skip_typeface_proc(const SkSerialProcs& procs) {
SkSerialProcs newProcs = procs;
newProcs.fTypefaceProc = nullptr;
newProcs.fTypefaceCtx = nullptr;
return newProcs;
}
// topLevelTypeFaceSet is null only on the top level call.
// This method is called recursively on every subpicture in two passes.
// textBlobsOnly serves to indicate that we are on the first pass and skip as much work as
// possible that is not relevant to collecting text blobs in topLevelTypeFaceSet
// TODO(nifong): dedupe typefaces and all other shared resources in a faster and more readable way.
void SkPictureData::serialize(SkWStream* stream, const SkSerialProcs& procs,
SkRefCntSet* topLevelTypeFaceSet, bool textBlobsOnly) const {
// This can happen at pretty much any time, so might as well do it first.
write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size());
stream->write(fOpData->bytes(), fOpData->size());
// We serialize all typefaces into the typeface section of the top-level picture.
SkRefCntSet localTypefaceSet;
SkRefCntSet* typefaceSet = topLevelTypeFaceSet ? topLevelTypeFaceSet : &localTypefaceSet;
// We delay serializing the bulk of our data until after we've serialized
// factories and typefaces by first serializing to an in-memory write buffer.
SkFactorySet factSet; // buffer refs factSet, so factSet must come first.
SkBinaryWriteBuffer buffer;
buffer.setFactoryRecorder(sk_ref_sp(&factSet));
buffer.setSerialProcs(skip_typeface_proc(procs));
buffer.setTypefaceRecorder(sk_ref_sp(typefaceSet));
this->flattenToBuffer(buffer, textBlobsOnly);
// Pretend to serialize our sub-pictures for the side effect of filling typefaceSet
// with typefaces from sub-pictures.
struct DevNull: public SkWStream {
DevNull() : fBytesWritten(0) {}
size_t fBytesWritten;
bool write(const void*, size_t size) override { fBytesWritten += size; return true; }
size_t bytesWritten() const override { return fBytesWritten; }
} devnull;
for (const auto& pic : fPictures) {
pic->serialize(&devnull, nullptr, typefaceSet, /*textBlobsOnly=*/ true);
}
if (textBlobsOnly) { return; } // return early from fake serialize
// We need to write factories before we write the buffer.
// We need to write typefaces before we write the buffer or any sub-picture.
WriteFactories(stream, factSet);
// Pass the original typefaceproc (if any) now that we're ready to actually serialize the
// typefaces. We skipped this proc before, when we were serializing paints, so that the
// paints would just write indices into our typeface set.
WriteTypefaces(stream, *typefaceSet, procs);
// Write the buffer.
write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten());
buffer.writeToStream(stream);
// Write sub-pictures by calling serialize again.
if (!fPictures.empty()) {
write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictures.count());
for (const auto& pic : fPictures) {
pic->serialize(stream, &procs, typefaceSet, /*textBlobsOnly=*/ false);
}
}
stream->write32(SK_PICT_EOF_TAG);
}
void SkPictureData::flatten(SkWriteBuffer& buffer) const {
write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size());
buffer.writeByteArray(fOpData->bytes(), fOpData->size());
if (!fPictures.empty()) {
write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictures.count());
for (const auto& pic : fPictures) {
SkPicturePriv::Flatten(pic, buffer);
}
}
if (!fDrawables.empty()) {
write_tag_size(buffer, SK_PICT_DRAWABLE_TAG, fDrawables.count());
for (const auto& draw : fDrawables) {
buffer.writeFlattenable(draw.get());
}
}
// Write this picture playback's data into a writebuffer
this->flattenToBuffer(buffer, false);
buffer.write32(SK_PICT_EOF_TAG);
}
///////////////////////////////////////////////////////////////////////////////
bool SkPictureData::parseStreamTag(SkStream* stream,
uint32_t tag,
uint32_t size,
const SkDeserialProcs& procs,
SkTypefacePlayback* topLevelTFPlayback) {
switch (tag) {
case SK_PICT_READER_TAG:
SkASSERT(nullptr == fOpData);
fOpData = SkData::MakeFromStream(stream, size);
if (!fOpData) {
return false;
}
break;
case SK_PICT_FACTORY_TAG: {
if (!stream->readU32(&size)) { return false; }
fFactoryPlayback = std::make_unique<SkFactoryPlayback>(size);
for (size_t i = 0; i < size; i++) {
SkString str;
size_t len;
if (!stream->readPackedUInt(&len)) { return false; }
str.resize(len);
if (stream->read(str.writable_str(), len) != len) {
return false;
}
fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str());
}
} break;
case SK_PICT_TYPEFACE_TAG: {
fTFPlayback.setCount(size);
for (uint32_t i = 0; i < size; ++i) {
sk_sp<SkTypeface> tf;
if (procs.fTypefaceProc) {
tf = procs.fTypefaceProc(&stream, sizeof(stream), procs.fTypefaceCtx);
} else {
tf = SkTypeface::MakeDeserialize(stream);
}
if (!tf) { // failed to deserialize
// fTFPlayback asserts it never has a null, so we plop in
// the default here.
tf = SkTypeface::MakeDefault();
}
fTFPlayback[i] = std::move(tf);
}
} break;
case SK_PICT_PICTURE_TAG: {
SkASSERT(fPictures.empty());
fPictures.reserve_back(SkToInt(size));
for (uint32_t i = 0; i < size; i++) {
auto pic = SkPicture::MakeFromStream(stream, &procs, topLevelTFPlayback);
if (!pic) {
return false;
}
fPictures.push_back(std::move(pic));
}
} break;
case SK_PICT_BUFFER_SIZE_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
SkReadBuffer buffer(storage.get(), size);
buffer.setVersion(fInfo.getVersion());
if (!fFactoryPlayback) {
return false;
}
fFactoryPlayback->setupBuffer(buffer);
buffer.setDeserialProcs(procs);
if (fTFPlayback.count() > 0) {
// .skp files <= v43 have typefaces serialized with each sub picture.
fTFPlayback.setupBuffer(buffer);
} else {
// Newer .skp files serialize all typefaces with the top picture.
topLevelTFPlayback->setupBuffer(buffer);
}
while (!buffer.eof() && buffer.isValid()) {
tag = buffer.readUInt();
size = buffer.readUInt();
this->parseBufferTag(buffer, tag, size);
}
if (!buffer.isValid()) {
return false;
}
} break;
}
return true; // success
}
static sk_sp<SkImage> create_image_from_buffer(SkReadBuffer& buffer) {
return buffer.readImage();
}
static sk_sp<SkDrawable> create_drawable_from_buffer(SkReadBuffer& buffer) {
return sk_sp<SkDrawable>((SkDrawable*)buffer.readFlattenable(SkFlattenable::kSkDrawable_Type));
}
// We need two types 'cause SkDrawable is const-variant.
template <typename T, typename U>
bool new_array_from_buffer(SkReadBuffer& buffer, uint32_t inCount,
SkTArray<sk_sp<T>>& array, sk_sp<U> (*factory)(SkReadBuffer&)) {
if (!buffer.validate(array.empty() && SkTFitsIn<int>(inCount))) {
return false;
}
if (0 == inCount) {
return true;
}
for (uint32_t i = 0; i < inCount; ++i) {
auto obj = factory(buffer);
if (!buffer.validate(obj != nullptr)) {
array.reset();
return false;
}
array.push_back(std::move(obj));
}
return true;
}
void SkPictureData::parseBufferTag(SkReadBuffer& buffer, uint32_t tag, uint32_t size) {
switch (tag) {
case SK_PICT_PAINT_BUFFER_TAG: {
if (!buffer.validate(SkTFitsIn<int>(size))) {
return;
}
const int count = SkToInt(size);
for (int i = 0; i < count; ++i) {
fPaints.push_back(buffer.readPaint());
if (!buffer.isValid()) {
return;
}
}
} break;
case SK_PICT_PATH_BUFFER_TAG:
if (size > 0) {
const int count = buffer.readInt();
if (!buffer.validate(count >= 0)) {
return;
}
for (int i = 0; i < count; i++) {
buffer.readPath(&fPaths.push_back());
if (!buffer.isValid()) {
return;
}
}
} break;
case SK_PICT_TEXTBLOB_BUFFER_TAG:
new_array_from_buffer(buffer, size, fTextBlobs, SkTextBlobPriv::MakeFromBuffer);
break;
case SK_PICT_VERTICES_BUFFER_TAG:
new_array_from_buffer(buffer, size, fVertices, SkVerticesPriv::Decode);
break;
case SK_PICT_IMAGE_BUFFER_TAG:
new_array_from_buffer(buffer, size, fImages, create_image_from_buffer);
break;
case SK_PICT_READER_TAG: {
// Preflight check that we can initialize all data from the buffer
// before allocating it.
if (!buffer.validateCanReadN<uint8_t>(size)) {
return;
}
auto data(SkData::MakeUninitialized(size));
if (!buffer.readByteArray(data->writable_data(), size) ||
!buffer.validate(nullptr == fOpData)) {
return;
}
SkASSERT(nullptr == fOpData);
fOpData = std::move(data);
} break;
case SK_PICT_PICTURE_TAG:
new_array_from_buffer(buffer, size, fPictures, SkPicturePriv::MakeFromBuffer);
break;
case SK_PICT_DRAWABLE_TAG:
new_array_from_buffer(buffer, size, fDrawables, create_drawable_from_buffer);
break;
default:
buffer.validate(false); // The tag was invalid.
break;
}
}
SkPictureData* SkPictureData::CreateFromStream(SkStream* stream,
const SkPictInfo& info,
const SkDeserialProcs& procs,
SkTypefacePlayback* topLevelTFPlayback) {
std::unique_ptr<SkPictureData> data(new SkPictureData(info));
if (!topLevelTFPlayback) {
topLevelTFPlayback = &data->fTFPlayback;
}
if (!data->parseStream(stream, procs, topLevelTFPlayback)) {
return nullptr;
}
return data.release();
}
SkPictureData* SkPictureData::CreateFromBuffer(SkReadBuffer& buffer,
const SkPictInfo& info) {
std::unique_ptr<SkPictureData> data(new SkPictureData(info));
buffer.setVersion(info.getVersion());
if (!data->parseBuffer(buffer)) {
return nullptr;
}
return data.release();
}
bool SkPictureData::parseStream(SkStream* stream,
const SkDeserialProcs& procs,
SkTypefacePlayback* topLevelTFPlayback) {
for (;;) {
uint32_t tag;
if (!stream->readU32(&tag)) { return false; }
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size;
if (!stream->readU32(&size)) { return false; }
if (!this->parseStreamTag(stream, tag, size, procs, topLevelTFPlayback)) {
return false; // we're invalid
}
}
return true;
}
bool SkPictureData::parseBuffer(SkReadBuffer& buffer) {
while (buffer.isValid()) {
uint32_t tag = buffer.readUInt();
if (SK_PICT_EOF_TAG == tag) {
break;
}
this->parseBufferTag(buffer, tag, buffer.readUInt());
}
// Check that we encountered required tags
if (!buffer.validate(this->opData() != nullptr)) {
// If we didn't build any opData, we are invalid. Even an EmptyPicture allocates the
// SkData for the ops (though its length may be zero).
return false;
}
return true;
}
const SkPaint* SkPictureData::optionalPaint(SkReadBuffer* reader) const {
int index = reader->readInt();
if (index == 0) {
return nullptr; // recorder wrote a zero for no paint (likely drawimage)
}
return reader->validate(index > 0 && index <= fPaints.count()) ?
&fPaints[index - 1] : nullptr;
}
const SkPaint& SkPictureData::requiredPaint(SkReadBuffer* reader) const {
const SkPaint* paint = this->optionalPaint(reader);
if (reader->validate(paint != nullptr)) {
return *paint;
}
static const SkPaint& stub = *(new SkPaint);
return stub;
}