blob: cc0d62848dc58e0945b9f72f3457e40c6dddea9e [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkRasterPipeline.h"
#include "include/core/SkColorType.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/private/base/SkTemplates.h"
#include "modules/skcms/skcms.h"
#include "src/base/SkVx.h"
#include "src/core/SkImageInfoPriv.h"
#include "src/core/SkOpts.h"
#include <algorithm>
#include <cstring>
#include <vector>
using namespace skia_private;
using Op = SkRasterPipelineOp;
bool gForceHighPrecisionRasterPipeline;
SkRasterPipeline::SkRasterPipeline(SkArenaAlloc* alloc) : fAlloc(alloc) {
this->reset();
}
void SkRasterPipeline::reset() {
fRewindCtx = nullptr;
fStages = nullptr;
fNumStages = 0;
}
void SkRasterPipeline::append(SkRasterPipelineOp op, void* ctx) {
SkASSERT(op != Op::uniform_color); // Please use append_constant_color().
SkASSERT(op != Op::unbounded_uniform_color); // Please use append_constant_color().
SkASSERT(op != Op::set_rgb); // Please use append_set_rgb().
SkASSERT(op != Op::unbounded_set_rgb); // Please use append_set_rgb().
SkASSERT(op != Op::parametric); // Please use append_transfer_function().
SkASSERT(op != Op::gamma_); // Please use append_transfer_function().
SkASSERT(op != Op::PQish); // Please use append_transfer_function().
SkASSERT(op != Op::HLGish); // Please use append_transfer_function().
SkASSERT(op != Op::HLGinvish); // Please use append_transfer_function().
SkASSERT(op != Op::stack_checkpoint); // Please use append_stack_rewind().
SkASSERT(op != Op::stack_rewind); // Please use append_stack_rewind().
this->unchecked_append(op, ctx);
}
void SkRasterPipeline::unchecked_append(SkRasterPipelineOp op, void* ctx) {
fStages = fAlloc->make<StageList>(StageList{fStages, op, ctx});
fNumStages += 1;
}
void SkRasterPipeline::append(SkRasterPipelineOp op, uintptr_t ctx) {
void* ptrCtx;
memcpy(&ptrCtx, &ctx, sizeof(ctx));
this->append(op, ptrCtx);
}
void SkRasterPipeline::extend(const SkRasterPipeline& src) {
if (src.empty()) {
return;
}
auto stages = fAlloc->makeArrayDefault<StageList>(src.fNumStages);
int n = src.fNumStages;
const StageList* st = src.fStages;
while (n --> 1) {
stages[n] = *st;
stages[n].prev = &stages[n-1];
st = st->prev;
}
stages[0] = *st;
stages[0].prev = fStages;
fStages = &stages[src.fNumStages - 1];
fNumStages += src.fNumStages;
}
const char* SkRasterPipeline::GetOpName(SkRasterPipelineOp op) {
const char* name = "";
switch (op) {
#define M(x) case Op::x: name = #x; break;
SK_RASTER_PIPELINE_OPS_ALL(M)
#undef M
}
return name;
}
void SkRasterPipeline::dump() const {
SkDebugf("SkRasterPipeline, %d stages\n", fNumStages);
std::vector<const char*> stages;
for (auto st = fStages; st; st = st->prev) {
stages.push_back(GetOpName(st->stage));
}
std::reverse(stages.begin(), stages.end());
for (const char* name : stages) {
SkDebugf("\t%s\n", name);
}
SkDebugf("\n");
}
void SkRasterPipeline::append_set_rgb(SkArenaAlloc* alloc, const float rgb[3]) {
auto arg = alloc->makeArrayDefault<float>(3);
arg[0] = rgb[0];
arg[1] = rgb[1];
arg[2] = rgb[2];
auto op = Op::unbounded_set_rgb;
if (0 <= rgb[0] && rgb[0] <= 1 &&
0 <= rgb[1] && rgb[1] <= 1 &&
0 <= rgb[2] && rgb[2] <= 1)
{
op = Op::set_rgb;
}
this->unchecked_append(op, arg);
}
void SkRasterPipeline::append_constant_color(SkArenaAlloc* alloc, const float rgba[4]) {
// r,g,b might be outside [0,1], but alpha should probably always be in [0,1].
SkASSERT(0 <= rgba[3] && rgba[3] <= 1);
if (rgba[0] == 0 && rgba[1] == 0 && rgba[2] == 0 && rgba[3] == 1) {
this->append(Op::black_color);
} else if (rgba[0] == 1 && rgba[1] == 1 && rgba[2] == 1 && rgba[3] == 1) {
this->append(Op::white_color);
} else {
auto ctx = alloc->make<SkRasterPipeline_UniformColorCtx>();
skvx::float4 color = skvx::float4::Load(rgba);
color.store(&ctx->r);
// uniform_color requires colors in range and can go lowp,
// while unbounded_uniform_color supports out-of-range colors too but not lowp.
if (0 <= rgba[0] && rgba[0] <= rgba[3] &&
0 <= rgba[1] && rgba[1] <= rgba[3] &&
0 <= rgba[2] && rgba[2] <= rgba[3]) {
// To make loads more direct, we store 8-bit values in 16-bit slots.
color = color * 255.0f + 0.5f;
ctx->rgba[0] = (uint16_t)color[0];
ctx->rgba[1] = (uint16_t)color[1];
ctx->rgba[2] = (uint16_t)color[2];
ctx->rgba[3] = (uint16_t)color[3];
this->unchecked_append(Op::uniform_color, ctx);
} else {
this->unchecked_append(Op::unbounded_uniform_color, ctx);
}
}
}
void SkRasterPipeline::append_matrix(SkArenaAlloc* alloc, const SkMatrix& matrix) {
SkMatrix::TypeMask mt = matrix.getType();
if (mt == SkMatrix::kIdentity_Mask) {
return;
}
if (mt == SkMatrix::kTranslate_Mask) {
float* trans = alloc->makeArrayDefault<float>(2);
trans[0] = matrix.getTranslateX();
trans[1] = matrix.getTranslateY();
this->append(Op::matrix_translate, trans);
} else if ((mt | (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) ==
(SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) {
float* scaleTrans = alloc->makeArrayDefault<float>(4);
scaleTrans[0] = matrix.getScaleX();
scaleTrans[1] = matrix.getScaleY();
scaleTrans[2] = matrix.getTranslateX();
scaleTrans[3] = matrix.getTranslateY();
this->append(Op::matrix_scale_translate, scaleTrans);
} else {
float* storage = alloc->makeArrayDefault<float>(9);
matrix.get9(storage);
if (!matrix.hasPerspective()) {
// note: asAffine and the 2x3 stage really only need 6 entries
this->append(Op::matrix_2x3, storage);
} else {
this->append(Op::matrix_perspective, storage);
}
}
}
void SkRasterPipeline::append_load(SkColorType ct, const SkRasterPipeline_MemoryCtx* ctx) {
switch (ct) {
case kUnknown_SkColorType: SkASSERT(false); break;
case kAlpha_8_SkColorType: this->append(Op::load_a8, ctx); break;
case kA16_unorm_SkColorType: this->append(Op::load_a16, ctx); break;
case kA16_float_SkColorType: this->append(Op::load_af16, ctx); break;
case kRGB_565_SkColorType: this->append(Op::load_565, ctx); break;
case kARGB_4444_SkColorType: this->append(Op::load_4444, ctx); break;
case kR8G8_unorm_SkColorType: this->append(Op::load_rg88, ctx); break;
case kR16G16_unorm_SkColorType: this->append(Op::load_rg1616, ctx); break;
case kR16G16_float_SkColorType: this->append(Op::load_rgf16, ctx); break;
case kRGBA_8888_SkColorType: this->append(Op::load_8888, ctx); break;
case kRGBA_1010102_SkColorType: this->append(Op::load_1010102, ctx); break;
case kR16G16B16A16_unorm_SkColorType:this->append(Op::load_16161616,ctx); break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType: this->append(Op::load_f16, ctx); break;
case kRGBA_F32_SkColorType: this->append(Op::load_f32, ctx); break;
case kGray_8_SkColorType: this->append(Op::load_a8, ctx);
this->append(Op::alpha_to_gray);
break;
case kR8_unorm_SkColorType: this->append(Op::load_a8, ctx);
this->append(Op::alpha_to_red);
break;
case kRGB_888x_SkColorType: this->append(Op::load_8888, ctx);
this->append(Op::force_opaque);
break;
case kBGRA_1010102_SkColorType: this->append(Op::load_1010102, ctx);
this->append(Op::swap_rb);
break;
case kRGB_101010x_SkColorType: this->append(Op::load_1010102, ctx);
this->append(Op::force_opaque);
break;
case kBGR_101010x_SkColorType: this->append(Op::load_1010102, ctx);
this->append(Op::force_opaque);
this->append(Op::swap_rb);
break;
case kBGRA_8888_SkColorType: this->append(Op::load_8888, ctx);
this->append(Op::swap_rb);
break;
case kSRGBA_8888_SkColorType:
this->append(Op::load_8888, ctx);
this->append_transfer_function(*skcms_sRGB_TransferFunction());
break;
}
}
void SkRasterPipeline::append_load_dst(SkColorType ct, const SkRasterPipeline_MemoryCtx* ctx) {
switch (ct) {
case kUnknown_SkColorType: SkASSERT(false); break;
case kAlpha_8_SkColorType: this->append(Op::load_a8_dst, ctx); break;
case kA16_unorm_SkColorType: this->append(Op::load_a16_dst, ctx); break;
case kA16_float_SkColorType: this->append(Op::load_af16_dst, ctx); break;
case kRGB_565_SkColorType: this->append(Op::load_565_dst, ctx); break;
case kARGB_4444_SkColorType: this->append(Op::load_4444_dst, ctx); break;
case kR8G8_unorm_SkColorType: this->append(Op::load_rg88_dst, ctx); break;
case kR16G16_unorm_SkColorType: this->append(Op::load_rg1616_dst, ctx); break;
case kR16G16_float_SkColorType: this->append(Op::load_rgf16_dst, ctx); break;
case kRGBA_8888_SkColorType: this->append(Op::load_8888_dst, ctx); break;
case kRGBA_1010102_SkColorType: this->append(Op::load_1010102_dst, ctx); break;
case kR16G16B16A16_unorm_SkColorType: this->append(Op::load_16161616_dst,ctx); break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType: this->append(Op::load_f16_dst, ctx); break;
case kRGBA_F32_SkColorType: this->append(Op::load_f32_dst, ctx); break;
case kGray_8_SkColorType: this->append(Op::load_a8_dst, ctx);
this->append(Op::alpha_to_gray_dst);
break;
case kR8_unorm_SkColorType: this->append(Op::load_a8_dst, ctx);
this->append(Op::alpha_to_red_dst);
break;
case kRGB_888x_SkColorType: this->append(Op::load_8888_dst, ctx);
this->append(Op::force_opaque_dst);
break;
case kBGRA_1010102_SkColorType: this->append(Op::load_1010102_dst, ctx);
this->append(Op::swap_rb_dst);
break;
case kRGB_101010x_SkColorType: this->append(Op::load_1010102_dst, ctx);
this->append(Op::force_opaque_dst);
break;
case kBGR_101010x_SkColorType: this->append(Op::load_1010102_dst, ctx);
this->append(Op::force_opaque_dst);
this->append(Op::swap_rb_dst);
break;
case kBGRA_8888_SkColorType: this->append(Op::load_8888_dst, ctx);
this->append(Op::swap_rb_dst);
break;
case kSRGBA_8888_SkColorType:
// TODO: We could remove the double-swap if we had _dst versions of all the TF stages
this->append(Op::load_8888_dst, ctx);
this->append(Op::swap_src_dst);
this->append_transfer_function(*skcms_sRGB_TransferFunction());
this->append(Op::swap_src_dst);
break;
}
}
void SkRasterPipeline::append_store(SkColorType ct, const SkRasterPipeline_MemoryCtx* ctx) {
switch (ct) {
case kUnknown_SkColorType: SkASSERT(false); break;
case kAlpha_8_SkColorType: this->append(Op::store_a8, ctx); break;
case kR8_unorm_SkColorType: this->append(Op::store_r8, ctx); break;
case kA16_unorm_SkColorType: this->append(Op::store_a16, ctx); break;
case kA16_float_SkColorType: this->append(Op::store_af16, ctx); break;
case kRGB_565_SkColorType: this->append(Op::store_565, ctx); break;
case kARGB_4444_SkColorType: this->append(Op::store_4444, ctx); break;
case kR8G8_unorm_SkColorType: this->append(Op::store_rg88, ctx); break;
case kR16G16_unorm_SkColorType: this->append(Op::store_rg1616, ctx); break;
case kR16G16_float_SkColorType: this->append(Op::store_rgf16, ctx); break;
case kRGBA_8888_SkColorType: this->append(Op::store_8888, ctx); break;
case kRGBA_1010102_SkColorType: this->append(Op::store_1010102, ctx); break;
case kR16G16B16A16_unorm_SkColorType: this->append(Op::store_16161616,ctx); break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType: this->append(Op::store_f16, ctx); break;
case kRGBA_F32_SkColorType: this->append(Op::store_f32, ctx); break;
case kRGB_888x_SkColorType: this->append(Op::force_opaque);
this->append(Op::store_8888, ctx);
break;
case kBGRA_1010102_SkColorType: this->append(Op::swap_rb);
this->append(Op::store_1010102, ctx);
break;
case kRGB_101010x_SkColorType: this->append(Op::force_opaque);
this->append(Op::store_1010102, ctx);
break;
case kBGR_101010x_SkColorType: this->append(Op::force_opaque);
this->append(Op::swap_rb);
this->append(Op::store_1010102, ctx);
break;
case kGray_8_SkColorType: this->append(Op::bt709_luminance_or_luma_to_alpha);
this->append(Op::store_a8, ctx);
break;
case kBGRA_8888_SkColorType: this->append(Op::swap_rb);
this->append(Op::store_8888, ctx);
break;
case kSRGBA_8888_SkColorType:
this->append_transfer_function(*skcms_sRGB_Inverse_TransferFunction());
this->append(Op::store_8888, ctx);
break;
}
}
void SkRasterPipeline::append_transfer_function(const skcms_TransferFunction& tf) {
void* ctx = const_cast<void*>(static_cast<const void*>(&tf));
switch (skcms_TransferFunction_getType(&tf)) {
case skcms_TFType_Invalid: SkASSERT(false); break;
case skcms_TFType_sRGBish:
if (tf.a == 1 && tf.b == 0 && tf.c == 0 && tf.d == 0 && tf.e == 0 && tf.f == 0) {
this->unchecked_append(Op::gamma_, ctx);
} else {
this->unchecked_append(Op::parametric, ctx);
}
break;
case skcms_TFType_PQish: this->unchecked_append(Op::PQish, ctx); break;
case skcms_TFType_HLGish: this->unchecked_append(Op::HLGish, ctx); break;
case skcms_TFType_HLGinvish: this->unchecked_append(Op::HLGinvish, ctx); break;
}
}
// GPUs clamp all color channels to the limits of the format just before the blend step. To match
// that auto-clamp, the RP blitter uses this helper immediately before appending blending stages.
void SkRasterPipeline::append_clamp_if_normalized(const SkImageInfo& info) {
if (SkColorTypeIsNormalized(info.colorType())) {
this->unchecked_append(Op::clamp_01, nullptr);
}
}
void SkRasterPipeline::append_stack_rewind() {
if (!fRewindCtx) {
fRewindCtx = fAlloc->make<SkRasterPipeline_RewindCtx>();
}
this->unchecked_append(Op::stack_rewind, fRewindCtx);
}
static void prepend_to_pipeline(SkRasterPipelineStage*& ip, SkOpts::StageFn stageFn, void* ctx) {
--ip;
ip->fn = stageFn;
ip->ctx = ctx;
}
bool SkRasterPipeline::build_lowp_pipeline(SkRasterPipelineStage* ip) const {
if (gForceHighPrecisionRasterPipeline || fRewindCtx) {
return false;
}
// Stages are stored backwards in fStages; to compensate, we assemble the pipeline in reverse
// here, back to front.
prepend_to_pipeline(ip, SkOpts::just_return_lowp, /*ctx=*/nullptr);
for (const StageList* st = fStages; st; st = st->prev) {
int opIndex = (int)st->stage;
if (opIndex >= kNumRasterPipelineLowpOps || !SkOpts::ops_lowp[opIndex]) {
// This program contains a stage that doesn't exist in lowp.
return false;
}
prepend_to_pipeline(ip, SkOpts::ops_lowp[opIndex], st->ctx);
}
return true;
}
void SkRasterPipeline::build_highp_pipeline(SkRasterPipelineStage* ip) const {
// We assemble the pipeline in reverse, since the stage list is stored backwards.
prepend_to_pipeline(ip, SkOpts::just_return_highp, /*ctx=*/nullptr);
for (const StageList* st = fStages; st; st = st->prev) {
int opIndex = (int)st->stage;
prepend_to_pipeline(ip, SkOpts::ops_highp[opIndex], st->ctx);
}
// stack_checkpoint and stack_rewind are only implemented in highp. We only need these stages
// when generating long (or looping) pipelines from SkSL. The other stages used by the SkSL
// Raster Pipeline generator will only have highp implementations, because we can't execute SkSL
// code without floating point.
if (fRewindCtx) {
const int rewindIndex = (int)Op::stack_checkpoint;
prepend_to_pipeline(ip, SkOpts::ops_highp[rewindIndex], fRewindCtx);
}
}
SkRasterPipeline::StartPipelineFn SkRasterPipeline::build_pipeline(
SkRasterPipelineStage* ip) const {
// We try to build a lowp pipeline first; if that fails, we fall back to a highp float pipeline.
if (this->build_lowp_pipeline(ip)) {
return SkOpts::start_pipeline_lowp;
}
this->build_highp_pipeline(ip);
return SkOpts::start_pipeline_highp;
}
int SkRasterPipeline::stages_needed() const {
// Add 1 to budget for a `just_return` stage at the end.
int stages = fNumStages + 1;
// If we have any stack_rewind stages, we will need to inject a stack_checkpoint stage.
if (fRewindCtx) {
stages += 1;
}
return stages;
}
void SkRasterPipeline::run(size_t x, size_t y, size_t w, size_t h) const {
if (this->empty()) {
return;
}
int stagesNeeded = this->stages_needed();
// Best to not use fAlloc here... we can't bound how often run() will be called.
AutoSTMalloc<32, SkRasterPipelineStage> program(stagesNeeded);
auto start_pipeline = this->build_pipeline(program.get() + stagesNeeded);
start_pipeline(x,y,x+w,y+h, program.get());
}
std::function<void(size_t, size_t, size_t, size_t)> SkRasterPipeline::compile() const {
if (this->empty()) {
return [](size_t, size_t, size_t, size_t) {};
}
int stagesNeeded = this->stages_needed();
SkRasterPipelineStage* program = fAlloc->makeArray<SkRasterPipelineStage>(stagesNeeded);
auto start_pipeline = this->build_pipeline(program + stagesNeeded);
return [=](size_t x, size_t y, size_t w, size_t h) {
start_pipeline(x,y,x+w,y+h, program);
};
}