blob: 4841ed21f133f49e44d9e3ead129a5b20d5cbecf [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCPathProcessor.h"
#include "GrOnFlushResourceProvider.h"
#include "GrTexture.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramBuilder.h"
#include "glsl/GrGLSLVarying.h"
// Slightly undershoot an AA bloat radius of 0.5 so vertices that fall on integer boundaries don't
// accidentally reach into neighboring path masks within the atlas.
constexpr float kAABloatRadius = 0.491111f;
// Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge
// from the path's bounding box and one edge from its 45-degree bounding box. The below inputs
// define a vertex by the two edges that need to be intersected. Normals point out of the octagon,
// and the bounding boxes are sent in as instance attribs.
static constexpr float kOctoEdgeNorms[8 * 4] = {
// bbox // bbox45
-1, 0, -1,+1,
-1, 0, -1,-1,
0,-1, -1,-1,
0,-1, +1,-1,
+1, 0, +1,-1,
+1, 0, +1,+1,
0,+1, +1,+1,
0,+1, -1,+1,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey);
sk_sp<const GrBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) {
GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey);
return onFlushRP->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kOctoEdgeNorms),
kOctoEdgeNorms, gVertexBufferKey);
}
static constexpr uint16_t kRestartStrip = 0xffff;
static constexpr uint16_t kOctoIndicesAsStrips[] = {
1, 0, 2, 4, 3, kRestartStrip, // First half.
5, 4, 6, 0, 7 // Second half.
};
static constexpr uint16_t kOctoIndicesAsTris[] = {
// First half.
1, 0, 2,
0, 4, 2,
2, 4, 3,
// Second half.
5, 4, 6,
4, 0, 6,
6, 0, 7,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
sk_sp<const GrBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
if (onFlushRP->caps()->usePrimitiveRestart()) {
return onFlushRP->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kOctoIndicesAsStrips),
kOctoIndicesAsStrips, gIndexBufferKey);
} else {
return onFlushRP->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kOctoIndicesAsTris),
kOctoIndicesAsTris, gIndexBufferKey);
}
}
int GrCCPathProcessor::NumIndicesPerInstance(const GrCaps& caps) {
return caps.usePrimitiveRestart() ? SK_ARRAY_COUNT(kOctoIndicesAsStrips)
: SK_ARRAY_COUNT(kOctoIndicesAsTris);
}
GrCCPathProcessor::GrCCPathProcessor(GrResourceProvider* resourceProvider,
sk_sp<GrTextureProxy> atlas, SkPath::FillType fillType)
: INHERITED(kGrCCPathProcessor_ClassID)
, fFillType(fillType)
, fAtlasAccess(std::move(atlas), GrSamplerState::Filter::kNearest,
GrSamplerState::WrapMode::kClamp, kFragment_GrShaderFlag) {
this->addInstanceAttrib("devbounds", kFloat4_GrVertexAttribType);
this->addInstanceAttrib("devbounds45", kFloat4_GrVertexAttribType);
this->addInstanceAttrib("view_matrix", kFloat4_GrVertexAttribType);
this->addInstanceAttrib("view_translate", kFloat2_GrVertexAttribType);
this->addInstanceAttrib("atlas_offset", kShort2_GrVertexAttribType);
this->addInstanceAttrib("color", kUByte4_norm_GrVertexAttribType);
SkASSERT(offsetof(Instance, fDevBounds) ==
this->getInstanceAttrib(InstanceAttribs::kDevBounds).fOffsetInRecord);
SkASSERT(offsetof(Instance, fDevBounds45) ==
this->getInstanceAttrib(InstanceAttribs::kDevBounds45).fOffsetInRecord);
SkASSERT(offsetof(Instance, fViewMatrix) ==
this->getInstanceAttrib(InstanceAttribs::kViewMatrix).fOffsetInRecord);
SkASSERT(offsetof(Instance, fViewTranslate) ==
this->getInstanceAttrib(InstanceAttribs::kViewTranslate).fOffsetInRecord);
SkASSERT(offsetof(Instance, fAtlasOffset) ==
this->getInstanceAttrib(InstanceAttribs::kAtlasOffset).fOffsetInRecord);
SkASSERT(offsetof(Instance, fColor) ==
this->getInstanceAttrib(InstanceAttribs::kColor).fOffsetInRecord);
SkASSERT(sizeof(Instance) == this->getInstanceStride());
GR_STATIC_ASSERT(6 == kNumInstanceAttribs);
this->addVertexAttrib("edge_norms", kFloat4_GrVertexAttribType);
fAtlasAccess.instantiate(resourceProvider);
this->addTextureSampler(&fAtlasAccess);
if (resourceProvider->caps()->usePrimitiveRestart()) {
this->setWillUsePrimitiveRestart();
}
}
void GrCCPathProcessor::getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const {
b->add32((fFillType << 16) | this->atlasProxy()->origin());
}
class GLSLPathProcessor : public GrGLSLGeometryProcessor {
public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
private:
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc,
FPCoordTransformIter&& transformIter) override {
const GrCCPathProcessor& proc = primProc.cast<GrCCPathProcessor>();
pdman.set2f(fAtlasAdjustUniform, 1.0f / proc.atlas()->width(),
1.0f / proc.atlas()->height());
this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
}
GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform;
typedef GrGLSLGeometryProcessor INHERITED;
};
GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLPathProcessor();
}
void GLSLPathProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
using InstanceAttribs = GrCCPathProcessor::InstanceAttribs;
using Interpolation = GrGLSLVaryingHandler::Interpolation;
const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>();
GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
const char* atlasAdjust;
fAtlasAdjustUniform = uniHandler->addUniform(
kVertex_GrShaderFlag,
kFloat2_GrSLType, "atlas_adjust", &atlasAdjust);
varyingHandler->emitAttributes(proc);
GrGLSLVarying texcoord(kFloat2_GrSLType);
GrGLSLVarying color(kHalf4_GrSLType);
varyingHandler->addVarying("texcoord", &texcoord);
varyingHandler->addPassThroughAttribute(&proc.getInstanceAttrib(InstanceAttribs::kColor),
args.fOutputColor, Interpolation::kCanBeFlat);
// The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to
// find an octagon that circumscribes the (bloated) path.
GrGLSLVertexBuilder* v = args.fVertBuilder;
// Each vertex is the intersection of one edge from devBounds and one from devBounds45.
// 'N' holds the normals to these edges as column vectors.
//
// NOTE: "float2x2(float4)" is valid and equivalent to "float2x2(float4.xy, float4.zw)",
// however Intel compilers crash when we use the former syntax in this shader.
v->codeAppendf("float2x2 N = float2x2(%s.xy, %s.zw);",
proc.getEdgeNormsAttrib().fName, proc.getEdgeNormsAttrib().fName);
// N[0] is the normal for the edge we are intersecting from the regular bounding box, pointing
// out of the octagon.
v->codeAppendf("float2 refpt = float2[2](%s.xy, %s.zw)[sk_VertexID >> 2];",
proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName,
proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName);
v->codeAppendf("refpt += N[0] * %f;", kAABloatRadius); // bloat for AA.
// N[1] is the normal for the edge we are intersecting from the 45-degree bounding box, pointing
// out of the octagon.
v->codeAppendf("float2 refpt45 = float2[2](%s.xy, %s.zw)[((sk_VertexID + 1) >> 2) & 1];",
proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName,
proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName);
v->codeAppendf("refpt45 *= float2x2(.5,.5,-.5,.5);"); // transform back to device space.
v->codeAppendf("refpt45 += N[1] * %f;", kAABloatRadius); // bloat for AA.
v->codeAppend ("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));");
v->codeAppendf("float2 octocoord = K * inverse(N);");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord");
// Convert to atlas coordinates in order to do our texture lookup.
v->codeAppendf("float2 atlascoord = octocoord + float2(%s);",
proc.getInstanceAttrib(InstanceAttribs::kAtlasOffset).fName);
if (kTopLeft_GrSurfaceOrigin == proc.atlasProxy()->origin()) {
v->codeAppendf("%s = atlascoord * %s;", texcoord.vsOut(), atlasAdjust);
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.atlasProxy()->origin());
v->codeAppendf("%s = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);",
texcoord.vsOut(), atlasAdjust, atlasAdjust);
}
// Convert to path/local cordinates.
v->codeAppendf("float2x2 viewmatrix = float2x2(%s.xy, %s.zw);", // float2x2(float4) busts Intel.
proc.getInstanceAttrib(InstanceAttribs::kViewMatrix).fName,
proc.getInstanceAttrib(InstanceAttribs::kViewMatrix).fName);
v->codeAppendf("float2 pathcoord = inverse(viewmatrix) * (octocoord - %s);",
proc.getInstanceAttrib(InstanceAttribs::kViewTranslate).fName);
this->emitTransforms(v, varyingHandler, uniHandler, GrShaderVar("pathcoord", kFloat2_GrSLType),
args.fFPCoordTransformHandler);
// Fragment shader.
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppend ("half coverage_count = ");
f->appendTextureLookup(args.fTexSamplers[0], texcoord.fsIn(), kFloat2_GrSLType);
f->codeAppend (".a;");
if (SkPath::kWinding_FillType == proc.fillType()) {
f->codeAppendf("%s = half4(min(abs(coverage_count), 1));", args.fOutputCoverage);
} else {
SkASSERT(SkPath::kEvenOdd_FillType == proc.fillType());
f->codeAppend ("half t = mod(abs(coverage_count), 2);");
f->codeAppendf("%s = half4(1 - abs(t - 1));", args.fOutputCoverage);
}
}