blob: 5d7fc695564fb71376b580cb8c020f933f973268 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCGeometry.h"
#include "GrTypes.h"
#include "GrPathUtils.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
// We convert between SkPoint and Sk2f freely throughout this file.
GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
void GrCCGeometry::beginPath() {
SkASSERT(!fBuildingContour);
fVerbs.push_back(Verb::kBeginPath);
}
void GrCCGeometry::beginContour(const SkPoint& pt) {
SkASSERT(!fBuildingContour);
// Store the current verb count in the fTriangles field for now. When we close the contour we
// will use this value to calculate the actual number of triangles in its fan.
fCurrContourTallies = {fVerbs.count(), 0, 0, 0};
fPoints.push_back(pt);
fVerbs.push_back(Verb::kBeginContour);
fCurrAnchorPoint = pt;
SkDEBUGCODE(fBuildingContour = true);
}
void GrCCGeometry::lineTo(const SkPoint& pt) {
SkASSERT(fBuildingContour);
fPoints.push_back(pt);
fVerbs.push_back(Verb::kLineTo);
}
void GrCCGeometry::appendLine(const Sk2f& endpt) {
endpt.store(&fPoints.push_back());
fVerbs.push_back(Verb::kLineTo);
}
static inline Sk2f normalize(const Sk2f& n) {
Sk2f nn = n*n;
return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
}
static inline float dot(const Sk2f& a, const Sk2f& b) {
float product[2];
(a * b).store(product);
return product[0] + product[1];
}
static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
float tolerance = 1/16.f) { // 1/16 of a pixel.
Sk2f l = p2 - p0; // Line from p0 -> p2.
// lwidth = Manhattan width of l.
Sk2f labs = l.abs();
float lwidth = labs[0] + labs[1];
// d = |p1 - p0| dot | l.y|
// |-l.x| = distance from p1 to l.
Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l);
float d = dd[0] - dd[1];
// We are collinear if a box with radius "tolerance", centered on p1, touches the line l.
// To decide this, we check if the distance from p1 to the line is less than the distance from
// p1 to the far corner of this imaginary box, along that same normal vector.
// The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l:
//
// abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n)
//
// Which reduces to:
//
// abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance
// abs(d) <= (abs(n.x) + abs(n.y)) * tolerance
//
// Use "<=" in case l == 0.
return std::abs(d) <= lwidth * tolerance;
}
static inline bool are_collinear(const SkPoint P[4], float tolerance = 1/16.f) { // 1/16 of a pixel.
Sk4f Px, Py; // |Px Py| |p0 - p3|
Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3|
Px -= Px[3]; // |. . | |p2 - p3|
Py -= Py[3]; // |. . | | 0 |
// Find [lx, ly] = the line from p3 to the furthest-away point from p3.
Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point.
int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1;
lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2;
float lx = Px[lidx], ly = Py[lidx];
float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly].
// |Px Py|
// d = |. . | * | ly| = distances from each point to l (two of the distances will be zero).
// |. . | |-lx|
// |. . |
Sk4f d = Px*ly - Py*lx;
// We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l.
// (See the rationale for this formula in the above, 3-point version of this function.)
// Use "<=" in case l == 0.
return (d.abs() <= lwidth * tolerance).allTrue();
}
// Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0,
const Sk2f& endPt, const Sk2f& tan1) {
Sk2f v = endPt - startPt;
float dot0 = dot(tan0, v);
float dot1 = dot(tan1, v);
// A small, negative tolerance handles floating-point error in the case when one tangent
// approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
return dot0 >= tolerance && dot1 >= tolerance;
}
static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
return SkNx_fma(t, b - a, a);
}
void GrCCGeometry::quadraticTo(const SkPoint P[3]) {
SkASSERT(fBuildingContour);
SkASSERT(P[0] == fPoints.back());
Sk2f p0 = Sk2f::Load(P);
Sk2f p1 = Sk2f::Load(P+1);
Sk2f p2 = Sk2f::Load(P+2);
// Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break
// The monotonic chopping math.
if (are_collinear(p0, p1, p2)) {
this->appendLine(p2);
return;
}
this->appendMonotonicQuadratics(p0, p1, p2);
}
inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2) {
Sk2f tan0 = p1 - p0;
Sk2f tan1 = p2 - p1;
// This should almost always be this case for well-behaved curves in the real world.
if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
this->appendSingleMonotonicQuadratic(p0, p1, p2);
return;
}
// Chop the curve into two segments with equal curvature. To do this we find the T value whose
// tangent angle is halfway between tan0 and tan1.
Sk2f n = normalize(tan0) - normalize(tan1);
// The midtangent can be found where (dQ(t) dot n) = 0:
//
// 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n |
// | -2*p0 + 2*p1 | | . |
//
// = | 2*t 1 | * | tan1 - tan0 | * | n |
// | 2*tan0 | | . |
//
// = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
//
// t = (tan0 dot n) / ((tan0 - tan1) dot n)
Sk2f dQ1n = (tan0 - tan1) * n;
Sk2f dQ0n = tan0 * n;
Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
Sk2f p01 = SkNx_fma(t, tan0, p0);
Sk2f p12 = SkNx_fma(t, tan1, p1);
Sk2f p012 = lerp(p01, p12, t);
this->appendSingleMonotonicQuadratic(p0, p01, p012);
this->appendSingleMonotonicQuadratic(p012, p12, p2);
}
inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
const Sk2f& p2) {
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
if (are_collinear(p0, p1, p2)) {
this->appendLine(p2);
return;
}
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
fVerbs.push_back(Verb::kMonotonicQuadraticTo);
++fCurrContourTallies.fQuadratics;
}
using ExcludedTerm = GrPathUtils::ExcludedTerm;
// Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
//
// More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
// be the two points on the curve at which a square box with radius "padRadius" will have a corner
// that touches the inflection point's tangent line.
//
// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
// for both in SIMD.
static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
const SkMatrix& CIT, ExcludedTerm skipTerm) {
SkASSERT(padRadius >= 0);
Sk2f Clx = s*s*s;
Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
float ret[2];
Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
(bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
ret[0] = cbrtf(ret[0]);
ret[1] = cbrtf(ret[1]);
return Sk2f::Load(ret);
}
static inline void swap_if_greater(float& a, float& b) {
if (a > b) {
std::swap(a, b);
}
}
// Calculates all parameter values for a loop at which points a square box with radius "padRadius"
// will have a corner that touches a tangent line from the intersection.
//
// T2 must contain the lesser parameter value of the loop intersection in its first component, and
// the greater in its second.
//
// roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
// around the first tangent. roots[1] will be filled with the padding points for the second tangent.
static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
const SkMatrix& CIT, ExcludedTerm skipTerm,
SkSTArray<3, float, true> roots[2]) {
SkASSERT(padRadius >= 0);
SkASSERT(T2[0] <= T2[1]);
SkASSERT(roots[0].empty());
SkASSERT(roots[1].empty());
Sk2f T1 = SkNx_shuffle<1,0>(T2);
Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
Sk2f Lx = Cl * CIT[3] + CIT[0];
Sk2f Ly = Cl * CIT[4] + CIT[1];
Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
Sk2f q = (1.f/3) * (T2 - T1);
Sk2f qqq = q*q*q;
Sk2f discr = qqq*bloat*2 + bloat*bloat;
float numRoots[2], D[2];
(discr < 0).thenElse(3, 1).store(numRoots);
(T2 - q).store(D);
// Values for calculating one root.
float R[2], QQ[2];
if ((discr >= 0).anyTrue()) {
Sk2f r = qqq + bloat;
Sk2f s = r.abs() + discr.sqrt();
(r > 0).thenElse(-s, s).store(R);
(q*q).store(QQ);
}
// Values for calculating three roots.
float P[2], cosTheta3[2];
if ((discr < 0).anyTrue()) {
(q.abs() * -2).store(P);
((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
}
for (int i = 0; i < 2; ++i) {
if (1 == numRoots[i]) {
float A = cbrtf(R[i]);
float B = A != 0 ? QQ[i]/A : 0;
roots[i].push_back(A + B + D[i]);
continue;
}
static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
float theta = std::acos(cosTheta3[i]) * (1.f/3);
roots[i].push_back(P[i] * std::cos(theta) + D[i]);
roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
// Sort the three roots.
swap_if_greater(roots[i][0], roots[i][1]);
swap_if_greater(roots[i][1], roots[i][2]);
swap_if_greater(roots[i][0], roots[i][1]);
}
}
static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
Sk2f aa = a*a;
aa += SkNx_shuffle<1,0>(aa);
SkASSERT(aa[0] == aa[1]);
Sk2f bb = b*b;
bb += SkNx_shuffle<1,0>(bb);
SkASSERT(bb[0] == bb[1]);
return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
}
static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, Sk2f& tan0, Sk2f& tan1, Sk2f& c) {
tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
return ((c1 - c2).abs() <= 1).allTrue();
}
void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
SkASSERT(fBuildingContour);
SkASSERT(P[0] == fPoints.back());
// Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
// Flat curves can break the math below.
if (are_collinear(P)) {
this->lineTo(P[3]);
return;
}
Sk2f p0 = Sk2f::Load(P);
Sk2f p1 = Sk2f::Load(P+1);
Sk2f p2 = Sk2f::Load(P+2);
Sk2f p3 = Sk2f::Load(P+3);
// Also detect near-quadratics ahead of time.
Sk2f tan0, tan1, c;
if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c)) {
this->appendMonotonicQuadratics(p0, c, p3);
return;
}
double tt[2], ss[2];
fCurrCubicType = SkClassifyCubic(P, tt, ss);
SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
SkMatrix CIT;
ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
SkASSERT(0 == CIT[6]);
SkASSERT(0 == CIT[7]);
SkASSERT(1 == CIT[8]);
// Each cubic has five different sections (not always inside t=[0..1]):
//
// 1. The section before the first inflection or loop intersection point, with padding.
// 2. The section that passes through the first inflection/intersection (aka the K,L
// intersection point or T=tt[0]/ss[0]).
// 3. The section between the two inflections/intersections, with padding.
// 4. The section that passes through the second inflection/intersection (aka the K,M
// intersection point or T=tt[1]/ss[1]).
// 5. The section after the second inflection/intersection, with padding.
//
// Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
//
// Sections 2 & 4 must be approximated. For loop intersections we render them with
// quadratic(s), and when passing through an inflection point we use a plain old flat line.
//
// We find T0..T3 below to be the dividing points between these five sections.
float T0, T1, T2, T3;
if (SkCubicType::kLoop != fCurrCubicType) {
Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
float T[2];
((t - pad) / s).store(T);
T0 = T[0];
T2 = T[1];
((t + pad) / s).store(T);
T1 = T[0];
T3 = T[1];
} else {
const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
SkSTArray<3, float, true> roots[2];
calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
T0 = roots[0].front();
if (1 == roots[0].count() || 1 == roots[1].count()) {
// The loop is tighter than our desired padding. Collapse the middle section to a point
// somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
// whole thing with quadratics.
T1 = T2 = (T[0] + T[1]) * .5f;
} else {
T1 = roots[0][1];
T2 = roots[1][1];
}
T3 = roots[1].back();
}
// Guarantee that T0..T3 are monotonic.
if (T0 > T3) {
// This is not a mathematically valid scenario. The only reason it would happen is if
// padding is very small and we have encountered FP rounding error.
T0 = T1 = T2 = T3 = (T0 + T3) / 2;
} else if (T1 > T2) {
// This just means padding before the middle section overlaps the padding after it. We
// collapse the middle section to a single point that splits the difference between the
// overlap in padding.
T1 = T2 = (T1 + T2) / 2;
}
// Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
// encountered FP rounding error.
T1 = std::max(T0, std::min(T1, T3));
T2 = std::max(T0, std::min(T2, T3));
// Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
if (T1 >= 1) {
// Only sections 1 & 2 can be in 0..1.
this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
return;
}
if (T2 <= 0) {
// Only sections 4 & 5 can be in 0..1.
this->chopCubic<&GrCCGeometry::appendCubicApproximation,
&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
return;
}
Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
if (T1 > 0) {
Sk2f T1T1 = Sk2f(T1);
Sk2f ab1 = lerp(p0, p1, T1T1);
Sk2f bc1 = lerp(p1, p2, T1T1);
Sk2f cd1 = lerp(p2, p3, T1T1);
Sk2f abc1 = lerp(ab1, bc1, T1T1);
Sk2f bcd1 = lerp(bc1, cd1, T1T1);
Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
// Sections 1 & 2.
this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
&GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
if (T2 >= 1) {
// The rest of the curve is Section 3 (middle section).
this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
return;
}
// Now calculate the first two bezier points of the middle section. The final two will come
// from when we chop the other side, as that is numerically more stable.
midp0 = abcd1;
midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
} else if (T2 >= 1) {
// The entire cubic is Section 3 (middle section).
this->appendMonotonicCubics(p0, p1, p2, p3);
return;
}
SkASSERT(T2 > 0 && T2 < 1);
Sk2f T2T2 = Sk2f(T2);
Sk2f ab2 = lerp(p0, p1, T2T2);
Sk2f bc2 = lerp(p1, p2, T2T2);
Sk2f cd2 = lerp(p2, p3, T2T2);
Sk2f abc2 = lerp(ab2, bc2, T2T2);
Sk2f bcd2 = lerp(bc2, cd2, T2T2);
Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
if (T1 <= 0) {
// The curve begins at Section 3 (middle section).
this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
} else if (T2 > T1) {
// Section 3 (middle section).
Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
}
// Sections 4 & 5.
this->chopCubic<&GrCCGeometry::appendCubicApproximation,
&GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
}
template<GrCCGeometry::AppendCubicFn AppendLeftRight>
inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, const Sk2f& tan0,
const Sk2f& tan1, int maxFutureSubdivisions) {
// Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan1.
Sk2f n = normalize(tan0) - normalize(tan1);
float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
float b = 6 * dot(p0 - p1*2 + p2, n);
float c = 3 * dot(p1 - p0, n);
float discr = b*b - 4*a*c;
if (discr < 0) {
// If this is the case then the cubic must be nearly flat.
(this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
return;
}
float q = -.5f * (b + copysignf(std::sqrt(discr), b));
float m = .5f*q*a;
float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
}
template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, float T, int maxFutureSubdivisions) {
if (T >= 1) {
(this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
return;
}
if (T <= 0) {
(this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
return;
}
Sk2f TT = T;
Sk2f ab = lerp(p0, p1, TT);
Sk2f bc = lerp(p1, p2, TT);
Sk2f cd = lerp(p2, p3, TT);
Sk2f abc = lerp(ab, bc, TT);
Sk2f bcd = lerp(bc, cd, TT);
Sk2f abcd = lerp(abc, bcd, TT);
(this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
(this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
}
void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, int maxSubdivisions) {
SkASSERT(maxSubdivisions >= 0);
if ((p0 == p3).allTrue()) {
return;
}
if (maxSubdivisions) {
Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
Sk2f tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
if (!is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
tan0, tan1,
maxSubdivisions - 1);
return;
}
}
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
// Don't send curves to the GPU if we know they are nearly flat (or just very small).
// Since the cubic segment is known to be convex at this point, our flatness check is simple.
if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
this->appendLine(p3);
return;
}
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
p3.store(&fPoints.push_back());
fVerbs.push_back(Verb::kMonotonicCubicTo);
++fCurrContourTallies.fCubics;
}
void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3, int maxSubdivisions) {
SkASSERT(maxSubdivisions >= 0);
if ((p0 == p3).allTrue()) {
return;
}
if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
// This section passes through an inflection point, so we can get away with a flat line.
// This can cause some curves to feel slightly more flat when inspected rigorously back and
// forth against another renderer, but for now this seems acceptable given the simplicity.
SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
this->appendLine(p3);
return;
}
Sk2f tan0, tan1, c;
if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, c) && maxSubdivisions) {
this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
tan0, tan1,
maxSubdivisions - 1);
return;
}
if (maxSubdivisions) {
this->appendMonotonicQuadratics(p0, c, p3);
} else {
this->appendSingleMonotonicQuadratic(p0, c, p3);
}
}
GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
SkASSERT(fBuildingContour);
SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
// The fTriangles field currently contains this contour's starting verb index. We can now
// use it to calculate the size of the contour's fan.
int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
if (fPoints.back() == fCurrAnchorPoint) {
--fanSize;
fVerbs.push_back(Verb::kEndClosedContour);
} else {
fVerbs.push_back(Verb::kEndOpenContour);
}
fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
SkDEBUGCODE(fBuildingContour = false);
return fCurrContourTallies;
}