blob: 0c7565c9613c778a89d0c4ba860d8ff2971394ce [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/shaders/SkImageShader.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkBitmapController.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkColorSpaceXformSteps.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkOpts.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkScopeExit.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkBitmapProcShader.h"
#include "src/shaders/SkEmptyShader.h"
SkM44 SkImageShader::CubicResamplerMatrix(float B, float C) {
#if 0
constexpr SkM44 kMitchell = SkM44( 1.f/18.f, -9.f/18.f, 15.f/18.f, -7.f/18.f,
16.f/18.f, 0.f/18.f, -36.f/18.f, 21.f/18.f,
1.f/18.f, 9.f/18.f, 27.f/18.f, -21.f/18.f,
0.f/18.f, 0.f/18.f, -6.f/18.f, 7.f/18.f);
constexpr SkM44 kCatmull = SkM44(0.0f, -0.5f, 1.0f, -0.5f,
1.0f, 0.0f, -2.5f, 1.5f,
0.0f, 0.5f, 2.0f, -1.5f,
0.0f, 0.0f, -0.5f, 0.5f);
if (B == 1.0f/3 && C == 1.0f/3) {
return kMitchell;
}
if (B == 0 && C == 0.5f) {
return kCatmull;
}
#endif
return SkM44( (1.f/6)*B, -(3.f/6)*B - C, (3.f/6)*B + 2*C, - (1.f/6)*B - C,
1 - (2.f/6)*B, 0, -3 + (12.f/6)*B + C, 2 - (9.f/6)*B - C,
(1.f/6)*B, (3.f/6)*B + C, 3 - (15.f/6)*B - 2*C, -2 + (9.f/6)*B + C,
0, 0, -C, (1.f/6)*B + C);
}
/**
* We are faster in clamp, so always use that tiling when we can.
*/
static SkTileMode optimize(SkTileMode tm, int dimension) {
SkASSERT(dimension > 0);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow
// for transforming to clamp.
return tm;
#else
return dimension == 1 ? SkTileMode::kClamp : tm;
#endif
}
SkImageShader::SkImageShader(sk_sp<SkImage> img,
SkTileMode tmx, SkTileMode tmy,
const SkSamplingOptions* sampling,
const SkMatrix* localMatrix,
bool clampAsIfUnpremul)
: INHERITED(localMatrix)
, fImage(std::move(img))
, fSampling(sampling ? *sampling : SkSamplingOptions())
, fTileModeX(optimize(tmx, fImage->width()))
, fTileModeY(optimize(tmy, fImage->height()))
, fClampAsIfUnpremul(clampAsIfUnpremul)
, fUseSamplingOptions(sampling != nullptr)
{}
// just used for legacy-unflattening
enum class LegacyFilterEnum {
kNone,
kLow,
kMedium,
kHigh,
// this is the special value for backward compatibility
kInheritFromPaint,
// this signals we should use the new SkFilterOptions
kUseFilterOptions,
// use fCubic and ignore FilterOptions
kUseCubicResampler,
kLast = kUseCubicResampler,
};
sk_sp<SkFlattenable> SkImageShader::PreSamplingCreate(SkReadBuffer& buffer) {
SkASSERT(buffer.isVersionLT(SkPicturePriv::kSamplingInImageShader_Version));
auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
LegacyFilterEnum fe = LegacyFilterEnum::kInheritFromPaint;
if (!buffer.isVersionLT(SkPicturePriv::kFilterEnumInImageShader_Version)) {
fe = buffer.read32LE<LegacyFilterEnum>(LegacyFilterEnum::kLast);
}
SkSamplingOptions op;
if (buffer.isVersionLT(SkPicturePriv::kCubicResamplerImageShader_Version)) {
if (!buffer.isVersionLT(SkPicturePriv::kFilterOptionsInImageShader_Version)) {
op.fUseCubic = false;
op.fFilter.fSampling = buffer.read32LE<SkSamplingMode>(SkSamplingMode::kLinear);
op.fFilter.fMipmap = buffer.read32LE<SkMipmapMode>(SkMipmapMode::kLinear);
}
} else {
switch (fe) {
case LegacyFilterEnum::kUseFilterOptions:
op.fUseCubic = false;
op.fFilter.fSampling = buffer.read32LE<SkSamplingMode>(SkSamplingMode::kLinear);
op.fFilter.fMipmap = buffer.read32LE<SkMipmapMode>(SkMipmapMode::kLinear);
break;
case LegacyFilterEnum::kUseCubicResampler:
op.fUseCubic = true;
op.fCubic.B = buffer.readScalar();
op.fCubic.C = buffer.readScalar();
break;
default:
break;
}
}
SkMatrix localMatrix;
buffer.readMatrix(&localMatrix);
sk_sp<SkImage> img = buffer.readImage();
if (!img) {
return nullptr;
}
switch (fe) {
case LegacyFilterEnum::kUseFilterOptions:
case LegacyFilterEnum::kUseCubicResampler:
return SkImageShader::Make(std::move(img), tmx, tmy, &op, &localMatrix);
default:
break;
}
return SkImageShader::Make(std::move(img), tmx, tmy, nullptr, &localMatrix);
}
static void write_sampling(SkWriteBuffer& buffer, SkSamplingOptions sampling) {
buffer.writeBool(sampling.fUseCubic);
if (sampling.fUseCubic) {
buffer.writeScalar(sampling.fCubic.B);
buffer.writeScalar(sampling.fCubic.C);
} else {
buffer.writeUInt((unsigned)sampling.fFilter.fSampling);
buffer.writeUInt((unsigned)sampling.fFilter.fMipmap);
}
}
static SkSamplingOptions read_sampling(SkReadBuffer& buffer) {
SkSamplingOptions sampling;
sampling.fUseCubic = buffer.readBool();
if (sampling.fUseCubic) {
sampling.fCubic.B = buffer.readScalar();
sampling.fCubic.C = buffer.readScalar();
} else {
sampling.fFilter.fSampling = buffer.read32LE<SkSamplingMode>(SkSamplingMode::kLinear);
sampling.fFilter.fMipmap = buffer.read32LE<SkMipmapMode>(SkMipmapMode::kLinear);
}
return sampling;
}
// fClampAsIfUnpremul is always false when constructed through public APIs,
// so there's no need to read or write it here.
sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) {
if (buffer.isVersionLT(SkPicturePriv::kSamplingInImageShader_Version)) {
return PreSamplingCreate(buffer);
}
auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
SkSamplingOptions sampling,
*samplingPtr = nullptr;
if (buffer.readBool()) { // fUseSamplingOptions
sampling = read_sampling(buffer);
samplingPtr = &sampling;
}
SkMatrix localMatrix;
buffer.readMatrix(&localMatrix);
sk_sp<SkImage> img = buffer.readImage();
if (!img) {
return nullptr;
}
return SkImageShader::Make(std::move(img), tmx, tmy, samplingPtr, &localMatrix);
}
void SkImageShader::flatten(SkWriteBuffer& buffer) const {
buffer.writeUInt((unsigned)fTileModeX);
buffer.writeUInt((unsigned)fTileModeY);
buffer.writeBool(fUseSamplingOptions);
if (fUseSamplingOptions) {
write_sampling(buffer, fSampling);
}
buffer.writeMatrix(this->getLocalMatrix());
buffer.writeImage(fImage.get());
SkASSERT(fClampAsIfUnpremul == false);
}
bool SkImageShader::isOpaque() const {
return fImage->isOpaque() &&
fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal;
}
constexpr SkCubicResampler kDefaultCubicResampler{1.0f/3, 1.0f/3};
static bool is_default_cubic_resampler(SkCubicResampler cubic) {
return SkScalarNearlyEqual(cubic.B, kDefaultCubicResampler.B) &&
SkScalarNearlyEqual(cubic.C, kDefaultCubicResampler.C);
}
static bool sampling_to_quality(SkSamplingOptions sampling, SkFilterQuality* quality) {
int q = -1; // not a legal quality enum
if (sampling.fUseCubic) {
if (is_default_cubic_resampler(sampling.fCubic)) {
q = kHigh_SkFilterQuality;
}
} else {
switch (sampling.fFilter.fMipmap) {
case SkMipmapMode::kNone:
q = sampling.fFilter.fSampling == SkSamplingMode::kLinear ?
kLow_SkFilterQuality :
kNone_SkFilterQuality;
break;
case SkMipmapMode::kNearest:
if (sampling.fFilter.fSampling == SkSamplingMode::kLinear) {
q = kMedium_SkFilterQuality;
}
break;
case SkMipmapMode::kLinear:
break;
}
}
if (q >= 0) {
*quality = (SkFilterQuality)q;
return true;
}
return false;
}
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
static bool legacy_shader_can_handle(const SkMatrix& inv) {
SkASSERT(!inv.hasPerspective());
// Scale+translate methods are always present, but affine might not be.
if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) {
return false;
}
// legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates
// out of range.
const SkScalar max_dev_coord = 32767.0f;
const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord));
// take 1/4 of max signed 32bits so we have room to subtract local values
const SkScalar max_fixed32dot32 = float(SK_MaxS32) * 0.25f;
if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32,
+max_fixed32dot32, +max_fixed32dot32).contains(src)) {
return false;
}
// legacy shader impl should be able to handle these matrices
return true;
}
SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec,
SkArenaAlloc* alloc) const {
if (fImage->alphaType() == kUnpremul_SkAlphaType) {
return nullptr;
}
if (fImage->colorType() != kN32_SkColorType) {
return nullptr;
}
if (fTileModeX != fTileModeY) {
return nullptr;
}
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
return nullptr;
}
SkFilterQuality quality = rec.fPaint->getFilterQuality();
if (fUseSamplingOptions) {
// we turn our sampling backwards into a quality (if possible)
// Note: if/when we can retool the legacy shader to explicitly take SkFilterOptions
// we can skip this funny step.
if (!sampling_to_quality(fSampling, &quality)) {
return nullptr;
}
}
if (quality == kHigh_SkFilterQuality) {
return nullptr;
}
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer,
// so it can't handle bitmaps larger than 65535.
//
// We back off another bit to 32767 to make small amounts of
// intermediate math safe, e.g. in
//
// SkFixed fx = ...;
// fx = tile(fx + SK_Fixed1);
//
// we want to make sure (fx + SK_Fixed1) never overflows.
if (fImage-> width() > 32767 ||
fImage->height() > 32767) {
return nullptr;
}
SkMatrix inv;
if (!this->computeTotalInverse(*rec.fMatrix, rec.fLocalMatrix, &inv) ||
!legacy_shader_can_handle(inv)) {
return nullptr;
}
if (!rec.isLegacyCompatible(fImage->colorSpace())) {
return nullptr;
}
// Send in a modified paint with different filter-quality if we don't agree with the paint
SkPaint modifiedPaint;
ContextRec modifiedRec = rec;
if (quality != rec.fPaint->getFilterQuality()) {
modifiedPaint = *rec.fPaint;
modifiedPaint.setFilterQuality(quality);
modifiedRec.fPaint = &modifiedPaint;
}
return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY,
as_IB(fImage.get()), modifiedRec, alloc);
}
#endif
SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const {
if (texM) {
*texM = this->getLocalMatrix();
}
if (xy) {
xy[0] = fTileModeX;
xy[1] = fTileModeY;
}
return const_cast<SkImage*>(fImage.get());
}
sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image,
SkTileMode tmx, SkTileMode tmy,
const SkSamplingOptions* options,
const SkMatrix* localMatrix,
bool clampAsIfUnpremul) {
auto is_unit = [](float x) {
return x >= 0 && x <= 1;
};
if (options && options->fUseCubic) {
if (!is_unit(options->fCubic.B) || !is_unit(options->fCubic.C)) {
return nullptr;
}
}
if (!image) {
return sk_make_sp<SkEmptyShader>();
}
return sk_sp<SkShader>{
new SkImageShader(image, tmx, tmy, options, localMatrix, clampAsIfUnpremul)
};
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "include/gpu/GrRecordingContext.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrColorInfo.h"
#include "src/gpu/GrImageTextureMaker.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrTextureAdjuster.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/gpu/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/effects/GrTextureEffect.h"
std::unique_ptr<GrFragmentProcessor> SkImageShader::asFragmentProcessor(
const GrFPArgs& args) const {
const auto lm = this->totalLocalMatrix(args.fPreLocalMatrix);
SkMatrix lmInverse;
if (!lm->invert(&lmInverse)) {
return nullptr;
}
// This would all be much nicer with std::variant.
static constexpr size_t kSize = std::max({sizeof(GrYUVAImageTextureMaker),
sizeof(GrTextureAdjuster ),
sizeof(GrImageTextureMaker ),
sizeof(GrBitmapTextureMaker )});
static constexpr size_t kAlign = std::max({alignof(GrYUVAImageTextureMaker),
alignof(GrTextureAdjuster ),
alignof(GrImageTextureMaker ),
alignof(GrBitmapTextureMaker )});
alignas(kAlign) char storage[kSize];
GrTextureProducer* producer = nullptr;
SkScopeExit destroyProducer([&producer]{ if (producer) { producer->~GrTextureProducer(); } });
uint32_t pinnedUniqueID;
SkBitmap bm;
if (as_IB(fImage)->isYUVA()) {
producer = new (&storage) GrYUVAImageTextureMaker(args.fContext, fImage.get());
} else if (GrSurfaceProxyView view =
as_IB(fImage)->refPinnedView(args.fContext, &pinnedUniqueID)) {
GrColorInfo colorInfo;
if (args.fContext->priv().caps()->isFormatSRGB(view.proxy()->backendFormat())) {
SkASSERT(fImage->colorType() == kRGBA_8888_SkColorType);
colorInfo = GrColorInfo(GrColorType::kRGBA_8888_SRGB, fImage->alphaType(),
fImage->refColorSpace());
} else {
colorInfo = fImage->imageInfo().colorInfo();
}
producer = new (&storage)
GrTextureAdjuster(args.fContext, std::move(view), colorInfo, pinnedUniqueID);
} else if (fImage->isLazyGenerated()) {
producer = new (&storage)
GrImageTextureMaker(args.fContext, fImage.get(), GrImageTexGenPolicy::kDraw);
} else if (as_IB(fImage)->getROPixels(nullptr, &bm)) {
producer =
new (&storage) GrBitmapTextureMaker(args.fContext, bm, GrImageTexGenPolicy::kDraw);
} else {
return nullptr;
}
GrSamplerState::WrapMode wmX = SkTileModeToWrapMode(fTileModeX),
wmY = SkTileModeToWrapMode(fTileModeY);
// Must set wrap and filter on the sampler before requesting a texture. In two places
// below we check the matrix scale factors to determine how to interpret the filter
// quality setting. This completely ignores the complexity of the drawVertices case
// where explicit local coords are provided by the caller.
bool sharpen = args.fContext->priv().options().fSharpenMipmappedTextures;
GrSamplerState::Filter fm = GrSamplerState::Filter::kNearest;
GrSamplerState::MipmapMode mm = GrSamplerState::MipmapMode::kNone;
bool bicubic;
SkCubicResampler kernel = GrBicubicEffect::gMitchell;
if (fUseSamplingOptions) {
bicubic = fSampling.fUseCubic;
if (bicubic) {
kernel = fSampling.fCubic;
} else {
switch (fSampling.fFilter.fSampling) {
case SkSamplingMode::kNearest: fm = GrSamplerState::Filter::kNearest; break;
case SkSamplingMode::kLinear : fm = GrSamplerState::Filter::kLinear ; break;
}
switch (fSampling.fFilter.fMipmap) {
case SkMipmapMode::kNone : mm = GrSamplerState::MipmapMode::kNone ; break;
case SkMipmapMode::kNearest: mm = GrSamplerState::MipmapMode::kNearest; break;
case SkMipmapMode::kLinear : mm = GrSamplerState::MipmapMode::kLinear ; break;
}
}
} else { // inherit filterquality from paint
std::tie(fm, mm, bicubic) =
GrInterpretFilterQuality(fImage->dimensions(),
args.fFilterQuality,
args.fMatrixProvider.localToDevice(),
*lm,
sharpen,
args.fAllowFilterQualityReduction);
}
std::unique_ptr<GrFragmentProcessor> fp;
if (bicubic) {
fp = producer->createBicubicFragmentProcessor(lmInverse, nullptr, nullptr, wmX, wmY, kernel);
} else {
fp = producer->createFragmentProcessor(lmInverse, nullptr, nullptr, {wmX, wmY, fm, mm});
}
if (!fp) {
return nullptr;
}
fp = GrColorSpaceXformEffect::Make(std::move(fp), fImage->colorSpace(), producer->alphaType(),
args.fDstColorInfo->colorSpace(), kPremul_SkAlphaType);
fp = GrBlendFragmentProcessor::Make(std::move(fp), nullptr, SkBlendMode::kModulate);
bool isAlphaOnly = SkColorTypeIsAlphaOnly(fImage->colorType());
if (isAlphaOnly) {
return fp;
} else if (args.fInputColorIsOpaque) {
return GrFragmentProcessor::OverrideInput(std::move(fp), SK_PMColor4fWHITE, false);
}
return GrFragmentProcessor::MulChildByInputAlpha(std::move(fp));
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "src/core/SkImagePriv.h"
sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkCopyPixelsMode cpm) {
const SkSamplingOptions* inherit_from_paint = nullptr;
return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, cpm),
tmx, tmy, inherit_from_paint, localMatrix);
}
sk_sp<SkShader> SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkCopyPixelsMode mode) {
auto s = SkMakeBitmapShader(src, tmx, tmy, localMatrix, mode);
if (!s) {
return nullptr;
}
if (src.colorType() == kAlpha_8_SkColorType && paint.getShader()) {
// Compose the image shader with the paint's shader. Alpha images+shaders should output the
// texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with
// the source image and dst shader (MakeBlend takes dst first, src second).
s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s));
}
return s;
}
void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); }
class SkImageStageUpdater : public SkStageUpdater {
public:
SkImageStageUpdater(const SkImageShader* shader, bool usePersp)
: fShader(shader)
, fUsePersp(usePersp || as_SB(shader)->getLocalMatrix().hasPerspective())
{}
const SkImageShader* fShader;
const bool fUsePersp; // else use affine
// large enough for perspective, though often we just use 2x3
float fMatrixStorage[9];
#if 0 // TODO: when we support mipmaps
SkRasterPipeline_GatherCtx* fGather;
SkRasterPipeline_TileCtx* fLimitX;
SkRasterPipeline_TileCtx* fLimitY;
SkRasterPipeline_DecalTileCtx* fDecal;
#endif
void append_matrix_stage(SkRasterPipeline* p) {
if (fUsePersp) {
p->append(SkRasterPipeline::matrix_perspective, fMatrixStorage);
} else {
p->append(SkRasterPipeline::matrix_2x3, fMatrixStorage);
}
}
bool update(const SkMatrix& ctm, const SkMatrix* localM) override {
SkMatrix matrix;
if (fShader->computeTotalInverse(ctm, localM, &matrix)) {
if (fUsePersp) {
matrix.get9(fMatrixStorage);
} else {
// if we get here, matrix should be affine. If it isn't, then defensively we
// won't draw (by returning false), but we should work to never let this
// happen (i.e. better preflight by the caller to know ahead of time that we
// may encounter perspective, either in the CTM, or in the localM).
//
// See https://bugs.chromium.org/p/skia/issues/detail?id=10004
//
if (!matrix.asAffine(fMatrixStorage)) {
SkASSERT(false);
return false;
}
}
return true;
}
return false;
}
};
static void tweak_quality_and_inv_matrix(SkFilterQuality* quality, SkMatrix* matrix) {
// When the matrix is just an integer translate, bilerp == nearest neighbor.
if (*quality == kLow_SkFilterQuality &&
matrix->getType() <= SkMatrix::kTranslate_Mask &&
matrix->getTranslateX() == (int)matrix->getTranslateX() &&
matrix->getTranslateY() == (int)matrix->getTranslateY()) {
*quality = kNone_SkFilterQuality;
}
// See skia:4649 and the GM image_scale_aligned.
if (*quality == kNone_SkFilterQuality) {
if (matrix->getScaleX() >= 0) {
matrix->setTranslateX(nextafterf(matrix->getTranslateX(),
floorf(matrix->getTranslateX())));
}
if (matrix->getScaleY() >= 0) {
matrix->setTranslateY(nextafterf(matrix->getTranslateY(),
floorf(matrix->getTranslateY())));
}
}
}
bool SkImageShader::doStages(const SkStageRec& rec, SkImageStageUpdater* updater) const {
SkFilterQuality quality = rec.fPaint.getFilterQuality();
if (fUseSamplingOptions) {
if (!sampling_to_quality(fSampling, &quality)) {
return false; // TODO: support samplingoptions in stages?
}
}
if (updater && quality == kMedium_SkFilterQuality) {
// TODO: medium: recall RequestBitmap and update width/height accordingly
return false;
}
SkRasterPipeline* p = rec.fPipeline;
SkArenaAlloc* alloc = rec.fAlloc;
SkMatrix matrix;
if (!this->computeTotalInverse(rec.fMatrixProvider.localToDevice(), rec.fLocalM, &matrix)) {
return false;
}
const auto* state = SkBitmapController::RequestBitmap(as_IB(fImage.get()),
matrix, quality, alloc);
if (!state) {
return false;
}
const SkPixmap& pm = state->pixmap();
matrix = state->invMatrix();
quality = state->quality();
auto info = pm.info();
p->append(SkRasterPipeline::seed_shader);
if (updater) {
updater->append_matrix_stage(p);
} else {
tweak_quality_and_inv_matrix(&quality, &matrix);
p->append_matrix(alloc, matrix);
}
auto gather = alloc->make<SkRasterPipeline_GatherCtx>();
gather->pixels = pm.addr();
gather->stride = pm.rowBytesAsPixels();
gather->width = pm.width();
gather->height = pm.height();
auto limit_x = alloc->make<SkRasterPipeline_TileCtx>(),
limit_y = alloc->make<SkRasterPipeline_TileCtx>();
limit_x->scale = pm.width();
limit_x->invScale = 1.0f / pm.width();
limit_y->scale = pm.height();
limit_y->invScale = 1.0f / pm.height();
SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr;
bool decal_x_and_y = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal;
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>();
decal_ctx->limit_x = limit_x->scale;
decal_ctx->limit_y = limit_y->scale;
}
#if 0 // TODO: when we support kMedium
if (updator && (quality == kMedium_SkFilterQuality)) {
// if we change levels in mipmap, we need to update the scales (and invScales)
updator->fGather = gather;
updator->fLimitX = limit_x;
updator->fLimitY = limit_y;
updator->fDecal = decal_ctx;
}
#endif
auto append_tiling_and_gather = [&] {
if (decal_x_and_y) {
p->append(SkRasterPipeline::decal_x_and_y, decal_ctx);
} else {
switch (fTileModeX) {
case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break;
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x, limit_x); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x, limit_x); break;
case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_x, decal_ctx); break;
}
switch (fTileModeY) {
case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break;
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_y, limit_y); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_y, limit_y); break;
case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_y, decal_ctx); break;
}
}
void* ctx = gather;
switch (info.colorType()) {
case kAlpha_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); break;
case kA16_unorm_SkColorType: p->append(SkRasterPipeline::gather_a16, ctx); break;
case kA16_float_SkColorType: p->append(SkRasterPipeline::gather_af16, ctx); break;
case kRGB_565_SkColorType: p->append(SkRasterPipeline::gather_565, ctx); break;
case kARGB_4444_SkColorType: p->append(SkRasterPipeline::gather_4444, ctx); break;
case kR8G8_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg88, ctx); break;
case kR16G16_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg1616, ctx); break;
case kR16G16_float_SkColorType: p->append(SkRasterPipeline::gather_rgf16, ctx); break;
case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); break;
case kRGBA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); break;
case kR16G16B16A16_unorm_SkColorType:
p->append(SkRasterPipeline::gather_16161616,ctx); break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::gather_f16, ctx); break;
case kRGBA_F32_SkColorType: p->append(SkRasterPipeline::gather_f32, ctx); break;
case kGray_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx);
p->append(SkRasterPipeline::alpha_to_gray ); break;
case kRGB_888x_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx);
p->append(SkRasterPipeline::force_opaque ); break;
case kBGRA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::swap_rb ); break;
case kRGB_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::force_opaque ); break;
case kBGR_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::force_opaque );
p->append(SkRasterPipeline::swap_rb ); break;
case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx);
p->append(SkRasterPipeline::swap_rb ); break;
case kUnknown_SkColorType: SkASSERT(false);
}
if (decal_ctx) {
p->append(SkRasterPipeline::check_decal_mask, decal_ctx);
}
};
auto append_misc = [&] {
SkColorSpace* cs = info.colorSpace();
SkAlphaType at = info.alphaType();
// Color for A8 images comes from the paint. TODO: all alpha images? none?
if (info.colorType() == kAlpha_8_SkColorType) {
SkColor4f rgb = rec.fPaint.getColor4f();
p->append_set_rgb(alloc, rgb);
cs = sk_srgb_singleton();
at = kUnpremul_SkAlphaType;
}
// Bicubic filtering naturally produces out of range values on both sides of [0,1].
if (quality == kHigh_SkFilterQuality) {
p->append(SkRasterPipeline::clamp_0);
p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul
? SkRasterPipeline::clamp_1
: SkRasterPipeline::clamp_a);
}
// Transform color space and alpha type to match shader convention (dst CS, premul alpha).
alloc->make<SkColorSpaceXformSteps>(cs, at,
rec.fDstCS, kPremul_SkAlphaType)
->apply(p);
return true;
};
// Check for fast-path stages.
auto ct = info.colorType();
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType)
&& quality == kLow_SkFilterQuality
&& fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) {
p->append(SkRasterPipeline::bilerp_clamp_8888, gather);
if (ct == kBGRA_8888_SkColorType) {
p->append(SkRasterPipeline::swap_rb);
}
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats
&& quality == kLow_SkFilterQuality
&& fTileModeX != SkTileMode::kDecal // TODO decal too?
&& fTileModeY != SkTileMode::kDecal) {
auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>();
*(SkRasterPipeline_GatherCtx*)(ctx) = *gather;
ctx->ct = ct;
ctx->tileX = fTileModeX;
ctx->tileY = fTileModeY;
ctx->invWidth = 1.0f / ctx->width;
ctx->invHeight = 1.0f / ctx->height;
p->append(SkRasterPipeline::bilinear, ctx);
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType)
&& quality == kHigh_SkFilterQuality
&& fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) {
p->append(SkRasterPipeline::bicubic_clamp_8888, gather);
if (ct == kBGRA_8888_SkColorType) {
p->append(SkRasterPipeline::swap_rb);
}
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats
&& quality == kHigh_SkFilterQuality
&& fTileModeX != SkTileMode::kDecal // TODO decal too?
&& fTileModeY != SkTileMode::kDecal) {
auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>();
*(SkRasterPipeline_GatherCtx*)(ctx) = *gather;
ctx->ct = ct;
ctx->tileX = fTileModeX;
ctx->tileY = fTileModeY;
ctx->invWidth = 1.0f / ctx->width;
ctx->invHeight = 1.0f / ctx->height;
p->append(SkRasterPipeline::bicubic, ctx);
return append_misc();
}
SkRasterPipeline_SamplerCtx* sampler = nullptr;
if (quality != kNone_SkFilterQuality) {
sampler = alloc->make<SkRasterPipeline_SamplerCtx>();
}
auto sample = [&](SkRasterPipeline::StockStage setup_x,
SkRasterPipeline::StockStage setup_y) {
p->append(setup_x, sampler);
p->append(setup_y, sampler);
append_tiling_and_gather();
p->append(SkRasterPipeline::accumulate, sampler);
};
if (quality == kNone_SkFilterQuality) {
append_tiling_and_gather();
} else if (quality == kLow_SkFilterQuality) {
p->append(SkRasterPipeline::save_xy, sampler);
sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_ny);
sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_ny);
sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_py);
sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_py);
p->append(SkRasterPipeline::move_dst_src);
} else {
SkASSERT(quality == kHigh_SkFilterQuality);
p->append(SkRasterPipeline::save_xy, sampler);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p3y);
p->append(SkRasterPipeline::move_dst_src);
}
return append_misc();
}
bool SkImageShader::onAppendStages(const SkStageRec& rec) const {
return this->doStages(rec, nullptr);
}
SkStageUpdater* SkImageShader::onAppendUpdatableStages(const SkStageRec& rec) const {
bool usePersp = rec.fMatrixProvider.localToDevice().hasPerspective();
auto updater = rec.fAlloc->make<SkImageStageUpdater>(this, usePersp);
return this->doStages(rec, updater) ? updater : nullptr;
}
enum class SamplingEnum {
kNearest,
kLinear,
kBicubic,
};
skvm::Color SkImageShader::onProgram(skvm::Builder* p,
skvm::Coord device, skvm::Coord origLocal, skvm::Color paint,
const SkMatrixProvider& matrices, const SkMatrix* localM,
SkFilterQuality paintQuality, const SkColorInfo& dst,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const {
SkMatrix baseInv;
if (!this->computeTotalInverse(matrices.localToDevice(), localM, &baseInv)) {
return {};
}
baseInv.normalizePerspective();
SkCubicResampler cubic = kDefaultCubicResampler;
const SkPixmap *upper = nullptr,
*lower = nullptr;
SkMatrix upperInv;
float lowerWeight = 0;
SamplingEnum sampling = (SamplingEnum)fSampling.fFilter.fSampling;
auto post_scale = [&](SkISize level, const SkMatrix& base) {
return SkMatrix::Scale(SkIntToScalar(level.width()) / fImage->width(),
SkIntToScalar(level.height()) / fImage->height())
* base;
};
if (fUseSamplingOptions) {
if (fSampling.fUseCubic) {
auto* access = alloc->make<SkMipmapAccessor>(as_IB(fImage.get()), baseInv,
SkMipmapMode::kNone);
upper = &access->level();
upperInv = post_scale(upper->dimensions(), baseInv);
sampling = SamplingEnum::kBicubic;
cubic = fSampling.fCubic;
} else {
auto* access = alloc->make<SkMipmapAccessor>(as_IB(fImage.get()), baseInv,
fSampling.fFilter.fMipmap);
upper = &access->level();
upperInv = post_scale(upper->dimensions(), baseInv);
lowerWeight = access->lowerWeight();
if (lowerWeight > 0) {
lower = &access->lowerLevel();
}
}
} else {
// Convert from the filter-quality enum to our working description:
// sampling : nearest, bilerp, bicubic
// miplevel(s) and associated matrices
//
SkFilterQuality quality = paintQuality;
// We use RequestBitmap() to make sure our SkBitmapController::State lives in the alloc.
// This lets the SkVMBlitter hang on to this state and keep our image alive.
auto state = SkBitmapController::RequestBitmap(as_IB(fImage.get()), baseInv, quality, alloc);
if (!state) {
return {};
}
upper = &state->pixmap();
upperInv = state->invMatrix();
quality = state->quality();
tweak_quality_and_inv_matrix(&quality, &upperInv);
switch (quality) {
case kNone_SkFilterQuality: sampling = SamplingEnum::kNearest; break;
case kLow_SkFilterQuality: sampling = SamplingEnum::kLinear; break;
case kMedium_SkFilterQuality: sampling = SamplingEnum::kLinear; break;
case kHigh_SkFilterQuality: sampling = SamplingEnum::kBicubic; break;
}
}
skvm::Coord upperLocal = SkShaderBase::ApplyMatrix(p, upperInv, origLocal, uniforms);
// All existing SkColorTypes pass these checks. We'd only fail here adding new ones.
skvm::PixelFormat unused;
if (true && !SkColorType_to_PixelFormat(upper->colorType(), &unused)) {
return {};
}
if (lower && !SkColorType_to_PixelFormat(lower->colorType(), &unused)) {
return {};
}
// We can exploit image opacity to skip work unpacking alpha channels.
const bool input_is_opaque = SkAlphaTypeIsOpaque(upper->alphaType())
|| SkColorTypeIsAlwaysOpaque(upper->colorType());
// Each call to sample() will try to rewrite the same uniforms over and over,
// so remember where we start and reset back there each time. That way each
// sample() call uses the same uniform offsets.
auto compute_clamp_limit = [&](float limit) {
// Subtract an ulp so the upper clamp limit excludes limit itself.
int bits;
memcpy(&bits, &limit, 4);
return p->uniformF(uniforms->push(bits-1));
};
// Except in the simplest case (no mips, no filtering), we reference uniforms
// more than once. To avoid adding/registering them multiple times, we pre-load them
// into a struct (just to logically group them together), based on the "current"
// pixmap (level of a mipmap).
//
struct Uniforms {
skvm::F32 w, iw, i2w,
h, ih, i2h;
skvm::F32 clamp_w,
clamp_h;
skvm::Uniform addr;
skvm::I32 rowBytesAsPixels;
skvm::PixelFormat pixelFormat; // not a uniform, but needed for each texel sample,
// so we store it here, since it is also dependent on
// the current pixmap (level).
};
auto setup_uniforms = [&](const SkPixmap& pm) -> Uniforms {
skvm::PixelFormat pixelFormat;
SkAssertResult(SkColorType_to_PixelFormat(pm.colorType(), &pixelFormat));
return {
p->uniformF(uniforms->pushF( pm.width())),
p->uniformF(uniforms->pushF(1.0f/pm.width())), // iff tileX == kRepeat
p->uniformF(uniforms->pushF(0.5f/pm.width())), // iff tileX == kMirror
p->uniformF(uniforms->pushF( pm.height())),
p->uniformF(uniforms->pushF(1.0f/pm.height())), // iff tileY == kRepeat
p->uniformF(uniforms->pushF(0.5f/pm.height())), // iff tileY == kMirror
compute_clamp_limit(pm. width()),
compute_clamp_limit(pm.height()),
uniforms->pushPtr(pm.addr()),
p->uniform32(uniforms->push(pm.rowBytesAsPixels())),
pixelFormat,
};
};
auto sample_texel = [&](const Uniforms& u, skvm::F32 sx, skvm::F32 sy) -> skvm::Color {
// repeat() and mirror() are written assuming they'll be followed by a [0,scale) clamp.
auto repeat = [&](skvm::F32 v, skvm::F32 S, skvm::F32 I) {
return v - floor(v * I) * S;
};
auto mirror = [&](skvm::F32 v, skvm::F32 S, skvm::F32 I2) {
// abs( (v-scale) - (2*scale)*floor((v-scale)*(0.5f/scale)) - scale )
// {---A---} {------------------B------------------}
skvm::F32 A = v - S,
B = (S + S) * floor(A * I2);
return abs(A - B - S);
};
switch (fTileModeX) {
case SkTileMode::kDecal: /* handled after gather */ break;
case SkTileMode::kClamp: /* we always clamp */ break;
case SkTileMode::kRepeat: sx = repeat(sx, u.w, u.iw); break;
case SkTileMode::kMirror: sx = mirror(sx, u.w, u.i2w); break;
}
switch (fTileModeY) {
case SkTileMode::kDecal: /* handled after gather */ break;
case SkTileMode::kClamp: /* we always clamp */ break;
case SkTileMode::kRepeat: sy = repeat(sy, u.h, u.ih); break;
case SkTileMode::kMirror: sy = mirror(sy, u.h, u.i2h); break;
}
// Always clamp sample coordinates to [0,width), [0,height), both for memory
// safety and to handle the clamps still needed by kClamp, kRepeat, and kMirror.
skvm::F32 clamped_x = clamp(sx, 0, u.clamp_w),
clamped_y = clamp(sy, 0, u.clamp_h);
// Load pixels from pm.addr()[(int)sx + (int)sy*stride].
skvm::I32 index = trunc(clamped_x) +
trunc(clamped_y) * u.rowBytesAsPixels;
skvm::Color c = gather(u.pixelFormat, u.addr, index);
// If we know the image is opaque, jump right to alpha = 1.0f, skipping work to unpack it.
if (input_is_opaque) {
c.a = p->splat(1.0f);
}
// Mask away any pixels that we tried to sample outside the bounds in kDecal.
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
skvm::I32 mask = p->splat(~0);
if (fTileModeX == SkTileMode::kDecal) { mask &= (sx == clamped_x); }
if (fTileModeY == SkTileMode::kDecal) { mask &= (sy == clamped_y); }
c.r = bit_cast(p->bit_and(mask, bit_cast(c.r)));
c.g = bit_cast(p->bit_and(mask, bit_cast(c.g)));
c.b = bit_cast(p->bit_and(mask, bit_cast(c.b)));
c.a = bit_cast(p->bit_and(mask, bit_cast(c.a)));
// Notice that even if input_is_opaque, c.a might now be 0.
}
return c;
};
auto sample_level = [&](const SkPixmap& pm, const SkMatrix& inv, skvm::Coord local) {
const Uniforms u = setup_uniforms(pm);
if (sampling == SamplingEnum::kNearest) {
return sample_texel(u, local.x,local.y);
} else if (sampling == SamplingEnum::kLinear) {
// Our four sample points are the corners of a logical 1x1 pixel
// box surrounding (x,y) at (0.5,0.5) off-center.
skvm::F32 left = local.x - 0.5f,
top = local.y - 0.5f,
right = local.x + 0.5f,
bottom = local.y + 0.5f;
// The fractional parts of right and bottom are our lerp factors in x and y respectively.
skvm::F32 fx = fract(right ),
fy = fract(bottom);
return lerp(lerp(sample_texel(u, left,top ), sample_texel(u, right,top ), fx),
lerp(sample_texel(u, left,bottom), sample_texel(u, right,bottom), fx), fy);
} else {
SkASSERT(sampling == SamplingEnum::kBicubic);
// All bicubic samples have the same fractional offset (fx,fy) from the center.
// They're either the 16 corners of a 3x3 grid/ surrounding (x,y) at (0.5,0.5) off-center.
skvm::F32 fx = fract(local.x + 0.5f),
fy = fract(local.y + 0.5f);
skvm::F32 wx[4],
wy[4];
SkM44 weights = CubicResamplerMatrix(cubic.B, cubic.C);
auto dot = [](const skvm::F32 a[], const skvm::F32 b[]) {
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
};
const skvm::F32 tmpx[] = { p->splat(1.0f), fx, fx*fx, fx*fx*fx };
const skvm::F32 tmpy[] = { p->splat(1.0f), fy, fy*fy, fy*fy*fy };
for (int row = 0; row < 4; ++row) {
SkV4 r = weights.row(row);
skvm::F32 ru[] = {
p->uniformF(uniforms->pushF(r[0])),
p->uniformF(uniforms->pushF(r[1])),
p->uniformF(uniforms->pushF(r[2])),
p->uniformF(uniforms->pushF(r[3])),
};
wx[row] = dot(ru, tmpx);
wy[row] = dot(ru, tmpy);
}
skvm::Color c;
c.r = c.g = c.b = c.a = p->splat(0.0f);
skvm::F32 sy = local.y - 1.5f;
for (int j = 0; j < 4; j++, sy += 1.0f) {
skvm::F32 sx = local.x - 1.5f;
for (int i = 0; i < 4; i++, sx += 1.0f) {
skvm::Color s = sample_texel(u, sx,sy);
skvm::F32 w = wx[i] * wy[j];
c.r += s.r * w;
c.g += s.g * w;
c.b += s.b * w;
c.a += s.a * w;
}
}
return c;
}
};
skvm::Color c = sample_level(*upper, upperInv, upperLocal);
if (lower) {
auto lowerInv = post_scale(lower->dimensions(), baseInv);
auto lowerLocal = SkShaderBase::ApplyMatrix(p, lowerInv, origLocal, uniforms);
// lower * weight + upper * (1 - weight)
c = lerp(c,
sample_level(*lower, lowerInv, lowerLocal),
p->uniformF(uniforms->pushF(lowerWeight)));
}
// If the input is opaque and we're not in decal mode, that means the output is too.
// Forcing *a to 1.0 here will retroactively skip any work we did to interpolate sample alphas.
if (input_is_opaque
&& fTileModeX != SkTileMode::kDecal
&& fTileModeY != SkTileMode::kDecal) {
c.a = p->splat(1.0f);
}
// Alpha-only images get their color from the paint (already converted to dst color space).
SkColorSpace* cs = upper->colorSpace();
SkAlphaType at = upper->alphaType();
if (SkColorTypeIsAlphaOnly(upper->colorType())) {
c.r = paint.r;
c.g = paint.g;
c.b = paint.b;
cs = dst.colorSpace();
at = kUnpremul_SkAlphaType;
}
if (sampling == SamplingEnum::kBicubic) {
// Bicubic filtering naturally produces out of range values on both sides of [0,1].
c.a = clamp01(c.a);
skvm::F32 limit = (at == kUnpremul_SkAlphaType || fClampAsIfUnpremul)
? p->splat(1.0f)
: c.a;
c.r = clamp(c.r, 0.0f, limit);
c.g = clamp(c.g, 0.0f, limit);
c.b = clamp(c.b, 0.0f, limit);
}
return SkColorSpaceXformSteps{cs,at, dst.colorSpace(),dst.alphaType()}.program(p, uniforms, c);
}