|  | // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c | 
|  | /* | 
|  | *  Roots3And4.c | 
|  | * | 
|  | *  Utility functions to find cubic and quartic roots, | 
|  | *  coefficients are passed like this: | 
|  | * | 
|  | *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 | 
|  | * | 
|  | *  The functions return the number of non-complex roots and | 
|  | *  put the values into the s array. | 
|  | * | 
|  | *  Author:         Jochen Schwarze (schwarze@isa.de) | 
|  | * | 
|  | *  Jan 26, 1990    Version for Graphics Gems | 
|  | *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic | 
|  | *                  (reported by Mark Podlipec), | 
|  | *                  Old-style function definitions, | 
|  | *                  IsZero() as a macro | 
|  | *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in | 
|  | *                  <math.h>, though the functions exist in the library. | 
|  | *                  If large coefficients are used, EQN_EPS should be | 
|  | *                  reduced considerably (e.g. to 1E-30), results will be | 
|  | *                  correct but multiple roots might be reported more | 
|  | *                  than once. | 
|  | */ | 
|  |  | 
|  | #include "SkPathOpsCubic.h" | 
|  | #include "SkPathOpsQuad.h" | 
|  | #include "SkQuarticRoot.h" | 
|  |  | 
|  | int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1, | 
|  | const double t0, const bool oneHint, double roots[4]) { | 
|  | #ifdef SK_DEBUG | 
|  | // create a string mathematica understands | 
|  | // GDB set print repe 15 # if repeated digits is a bother | 
|  | //     set print elements 400 # if line doesn't fit | 
|  | char str[1024]; | 
|  | sk_bzero(str, sizeof(str)); | 
|  | SK_SNPRINTF(str, sizeof(str), | 
|  | "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", | 
|  | t4, t3, t2, t1, t0); | 
|  | SkPathOpsDebug::MathematicaIze(str, sizeof(str)); | 
|  | #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA | 
|  | SkDebugf("%s\n", str); | 
|  | #endif | 
|  | #endif | 
|  | if (approximately_zero_when_compared_to(t4, t0)  // 0 is one root | 
|  | && approximately_zero_when_compared_to(t4, t1) | 
|  | && approximately_zero_when_compared_to(t4, t2)) { | 
|  | if (approximately_zero_when_compared_to(t3, t0) | 
|  | && approximately_zero_when_compared_to(t3, t1) | 
|  | && approximately_zero_when_compared_to(t3, t2)) { | 
|  | return SkDQuad::RootsReal(t2, t1, t0, roots); | 
|  | } | 
|  | if (approximately_zero_when_compared_to(t4, t3)) { | 
|  | return SkDCubic::RootsReal(t3, t2, t1, t0, roots); | 
|  | } | 
|  | } | 
|  | if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))  // 0 is one root | 
|  | //      && approximately_zero_when_compared_to(t0, t2) | 
|  | && approximately_zero_when_compared_to(t0, t3) | 
|  | && approximately_zero_when_compared_to(t0, t4)) { | 
|  | int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots); | 
|  | for (int i = 0; i < num; ++i) { | 
|  | if (approximately_zero(roots[i])) { | 
|  | return num; | 
|  | } | 
|  | } | 
|  | roots[num++] = 0; | 
|  | return num; | 
|  | } | 
|  | if (oneHint) { | 
|  | SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0) || | 
|  | approximately_zero_when_compared_to(t4 + t3 + t2 + t1 + t0,  // 1 is one root | 
|  | SkTMax(fabs(t4), SkTMax(fabs(t3), SkTMax(fabs(t2), SkTMax(fabs(t1), fabs(t0))))))); | 
|  | // note that -C == A + B + D + E | 
|  | int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); | 
|  | for (int i = 0; i < num; ++i) { | 
|  | if (approximately_equal(roots[i], 1)) { | 
|  | return num; | 
|  | } | 
|  | } | 
|  | roots[num++] = 1; | 
|  | return num; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C, | 
|  | const double D, const double E, double s[4]) { | 
|  | double  u, v; | 
|  | /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ | 
|  | const double invA = 1 / A; | 
|  | const double a = B * invA; | 
|  | const double b = C * invA; | 
|  | const double c = D * invA; | 
|  | const double d = E * invA; | 
|  | /*  substitute x = y - a/4 to eliminate cubic term: | 
|  | x^4 + px^2 + qx + r = 0 */ | 
|  | const double a2 = a * a; | 
|  | const double p = -3 * a2 / 8 + b; | 
|  | const double q = a2 * a / 8 - a * b / 2 + c; | 
|  | const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; | 
|  | int num; | 
|  | double largest = SkTMax(fabs(p), fabs(q)); | 
|  | if (approximately_zero_when_compared_to(r, largest)) { | 
|  | /* no absolute term: y(y^3 + py + q) = 0 */ | 
|  | num = SkDCubic::RootsReal(1, 0, p, q, s); | 
|  | s[num++] = 0; | 
|  | } else { | 
|  | /* solve the resolvent cubic ... */ | 
|  | double cubicRoots[3]; | 
|  | int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots); | 
|  | int index; | 
|  | /* ... and take one real solution ... */ | 
|  | double z; | 
|  | num = 0; | 
|  | int num2 = 0; | 
|  | for (index = firstCubicRoot; index < roots; ++index) { | 
|  | z = cubicRoots[index]; | 
|  | /* ... to build two quadric equations */ | 
|  | u = z * z - r; | 
|  | v = 2 * z - p; | 
|  | if (approximately_zero_squared(u)) { | 
|  | u = 0; | 
|  | } else if (u > 0) { | 
|  | u = sqrt(u); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | if (approximately_zero_squared(v)) { | 
|  | v = 0; | 
|  | } else if (v > 0) { | 
|  | v = sqrt(v); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s); | 
|  | num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num); | 
|  | if (!((num | num2) & 1)) { | 
|  | break;  // prefer solutions without single quad roots | 
|  | } | 
|  | } | 
|  | num += num2; | 
|  | if (!num) { | 
|  | return 0;  // no valid cubic root | 
|  | } | 
|  | } | 
|  | /* resubstitute */ | 
|  | const double sub = a / 4; | 
|  | for (int i = 0; i < num; ++i) { | 
|  | s[i] -= sub; | 
|  | } | 
|  | // eliminate duplicates | 
|  | for (int i = 0; i < num - 1; ++i) { | 
|  | for (int j = i + 1; j < num; ) { | 
|  | if (AlmostDequalUlps(s[i], s[j])) { | 
|  | if (j < --num) { | 
|  | s[j] = s[num]; | 
|  | } | 
|  | } else { | 
|  | ++j; | 
|  | } | 
|  | } | 
|  | } | 
|  | return num; | 
|  | } |