blob: fe3b23d9a7e074980ec4c0cc93984734580af7e5 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/vk/GrVkMemory.h"
#include "include/gpu/vk/GrVkMemoryAllocator.h"
#include "src/gpu/vk/GrVkGpu.h"
#include "src/gpu/vk/GrVkUtil.h"
using AllocationPropertyFlags = GrVkMemoryAllocator::AllocationPropertyFlags;
using BufferUsage = GrVkMemoryAllocator::BufferUsage;
static void report_memory_usage(GrVkMemoryAllocator* allocator) {
#if SK_HISTOGRAMS_ENABLED
uint64_t allocatedMemory = allocator->totalAllocatedMemory();
uint64_t usedMemory = allocator->totalUsedMemory();
SkASSERT(usedMemory <= allocatedMemory);
SK_HISTOGRAM_PERCENTAGE("VulkanMemoryAllocator.PercentUsed",
(usedMemory * 100) / allocatedMemory);
// allocatedMemory is in bytes and need to be reported it in kilobytes. SK_HISTOGRAM_MEMORY_KB
// supports samples up to around 500MB which should support the amounts of memory we allocate.
SK_HISTOGRAM_MEMORY_KB("VulkanMemoryAllocator.AmountAllocated", allocatedMemory >> 10);
#endif
}
static BufferUsage get_buffer_usage(GrVkBuffer::Type type, bool dynamic) {
switch (type) {
case GrVkBuffer::kVertex_Type: // fall through
case GrVkBuffer::kIndex_Type: // fall through
case GrVkBuffer::kIndirect_Type: // fall through
case GrVkBuffer::kTexel_Type:
return dynamic ? BufferUsage::kCpuWritesGpuReads : BufferUsage::kGpuOnly;
case GrVkBuffer::kUniform_Type:
SkASSERT(dynamic);
return BufferUsage::kCpuWritesGpuReads;
case GrVkBuffer::kCopyRead_Type: // fall through
case GrVkBuffer::kCopyWrite_Type:
return BufferUsage::kCpuOnly;
}
SK_ABORT("Invalid GrVkBuffer::Type");
}
bool GrVkMemory::AllocAndBindBufferMemory(GrVkGpu* gpu,
VkBuffer buffer,
GrVkBuffer::Type type,
bool dynamic,
GrVkAlloc* alloc) {
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
GrVkBackendMemory memory = 0;
GrVkMemoryAllocator::BufferUsage usage = get_buffer_usage(type, dynamic);
AllocationPropertyFlags propFlags;
if (usage == GrVkMemoryAllocator::BufferUsage::kCpuWritesGpuReads) {
// In general it is always fine (and often better) to keep buffers always mapped.
// TODO: According to AMDs guide for the VulkanMemoryAllocator they suggest there are two
// cases when keeping it mapped can hurt. The first is when running on Win7 or Win8 (Win 10
// is fine). In general, by the time Vulkan ships it is probably less likely to be running
// on non Win10 or newer machines. The second use case is if running on an AMD card and you
// are using the special GPU local and host mappable memory. However, in general we don't
// pick this memory as we've found it slower than using the cached host visible memory. In
// the future if we find the need to special case either of these two issues we can add
// checks for them here.
propFlags = AllocationPropertyFlags::kPersistentlyMapped;
} else {
propFlags = AllocationPropertyFlags::kNone;
}
VkResult result = allocator->allocateBufferMemory(buffer, usage, propFlags, &memory);
if (!gpu->checkVkResult(result)) {
return false;
}
allocator->getAllocInfo(memory, alloc);
// Bind buffer
VkResult err;
GR_VK_CALL_RESULT(gpu, err, BindBufferMemory(gpu->device(), buffer, alloc->fMemory,
alloc->fOffset));
if (err) {
FreeBufferMemory(gpu, type, *alloc);
return false;
}
report_memory_usage(allocator);
return true;
}
void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, GrVkBuffer::Type type,
const GrVkAlloc& alloc) {
SkASSERT(alloc.fBackendMemory);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
allocator->freeMemory(alloc.fBackendMemory);
}
bool GrVkMemory::AllocAndBindImageMemory(GrVkGpu* gpu,
VkImage image,
bool linearTiling,
GrVkAlloc* alloc) {
SkASSERT(!linearTiling);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
GrVkBackendMemory memory = 0;
VkMemoryRequirements memReqs;
GR_VK_CALL(gpu->vkInterface(), GetImageMemoryRequirements(gpu->device(), image, &memReqs));
AllocationPropertyFlags propFlags;
// If we ever find that our allocator is not aggressive enough in using dedicated image
// memory we can add a size check here to force the use of dedicate memory. However for now,
// we let the allocators decide. The allocator can query the GPU for each image to see if the
// GPU recommends or requires the use of dedicated memory.
if (gpu->vkCaps().shouldAlwaysUseDedicatedImageMemory()) {
propFlags = AllocationPropertyFlags::kDedicatedAllocation;
} else {
propFlags = AllocationPropertyFlags::kNone;
}
if (gpu->protectedContext()) {
propFlags |= AllocationPropertyFlags::kProtected;
}
VkResult result = allocator->allocateImageMemory(image, propFlags, &memory);
if (!gpu->checkVkResult(result)) {
return false;
}
allocator->getAllocInfo(memory, alloc);
// Bind buffer
VkResult err;
GR_VK_CALL_RESULT(gpu, err, BindImageMemory(gpu->device(), image, alloc->fMemory,
alloc->fOffset));
if (err) {
FreeImageMemory(gpu, linearTiling, *alloc);
return false;
}
report_memory_usage(allocator);
return true;
}
void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, bool linearTiling,
const GrVkAlloc& alloc) {
SkASSERT(alloc.fBackendMemory);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
allocator->freeMemory(alloc.fBackendMemory);
}
void* GrVkMemory::MapAlloc(GrVkGpu* gpu, const GrVkAlloc& alloc) {
SkASSERT(GrVkAlloc::kMappable_Flag & alloc.fFlags);
SkASSERT(alloc.fBackendMemory);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
void* mapPtr;
VkResult result = allocator->mapMemory(alloc.fBackendMemory, &mapPtr);
if (!gpu->checkVkResult(result)) {
return nullptr;
}
return mapPtr;
}
void GrVkMemory::UnmapAlloc(const GrVkGpu* gpu, const GrVkAlloc& alloc) {
SkASSERT(alloc.fBackendMemory);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
allocator->unmapMemory(alloc.fBackendMemory);
}
void GrVkMemory::GetNonCoherentMappedMemoryRange(const GrVkAlloc& alloc, VkDeviceSize offset,
VkDeviceSize size, VkDeviceSize alignment,
VkMappedMemoryRange* range) {
SkASSERT(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag);
offset = offset + alloc.fOffset;
VkDeviceSize offsetDiff = offset & (alignment -1);
offset = offset - offsetDiff;
size = (size + alignment - 1) & ~(alignment - 1);
#ifdef SK_DEBUG
SkASSERT(offset >= alloc.fOffset);
SkASSERT(offset + size <= alloc.fOffset + alloc.fSize);
SkASSERT(0 == (offset & (alignment-1)));
SkASSERT(size > 0);
SkASSERT(0 == (size & (alignment-1)));
#endif
memset(range, 0, sizeof(VkMappedMemoryRange));
range->sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range->memory = alloc.fMemory;
range->offset = offset;
range->size = size;
}
void GrVkMemory::FlushMappedAlloc(GrVkGpu* gpu, const GrVkAlloc& alloc, VkDeviceSize offset,
VkDeviceSize size) {
if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) {
SkASSERT(offset == 0);
SkASSERT(size <= alloc.fSize);
SkASSERT(alloc.fBackendMemory);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
VkResult result = allocator->flushMemory(alloc.fBackendMemory, offset, size);
gpu->checkVkResult(result);
}
}
void GrVkMemory::InvalidateMappedAlloc(GrVkGpu* gpu, const GrVkAlloc& alloc,
VkDeviceSize offset, VkDeviceSize size) {
if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) {
SkASSERT(offset == 0);
SkASSERT(size <= alloc.fSize);
SkASSERT(alloc.fBackendMemory);
GrVkMemoryAllocator* allocator = gpu->memoryAllocator();
VkResult result = allocator->invalidateMemory(alloc.fBackendMemory, offset, size);
gpu->checkVkResult(result);
}
}