blob: 71a15c68a8a8f8d0a677aa38f84b7c467cc16b34 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "SkColorPriv.h"
#include "SkColorLookUpTable.h"
#include "SkColorSpaceXform_A2B.h"
#include "SkColorSpaceXformPriv.h"
#include "SkHalf.h"
#include "SkImageShaderContext.h"
#include "SkMSAN.h"
#include "SkPM4f.h"
#include "SkPM4fPriv.h"
#include "SkRasterPipeline.h"
#include "SkSRGB.h"
namespace {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
static constexpr int N = 8;
#else
static constexpr int N = 4;
#endif
using SkNf = SkNx<N, float>;
using SkNi = SkNx<N, int32_t>;
using SkNu = SkNx<N, uint32_t>;
using SkNh = SkNx<N, uint16_t>;
using SkNb = SkNx<N, uint8_t>;
using Fn = void(SK_VECTORCALL *)(size_t x_tail, void** p, SkNf,SkNf,SkNf,SkNf,
SkNf,SkNf,SkNf,SkNf);
// x_tail encodes two values x and tail as x*N+tail, where 0 <= tail < N.
// x is the induction variable we're walking along, incrementing by N each step.
// tail == 0 means work with a full N pixels; otherwise use only the low tail pixels.
//
// p is our program, a sequence of Fn to call interlaced with any void* context pointers. E.g.
// &load_8888
// (src ptr)
// &from_srgb
// &move_src_dst
// &load_f16
// (dst ptr)
// &swap
// &srcover
// &store_f16
// (dst ptr)
// &just_return
} // namespace
#define SI static inline
// Basically, return *(*ptr)++, maybe faster than the compiler can do it.
SI void* load_and_increment(void*** ptr) {
// We do this often enough that it's worth hyper-optimizing.
// x86 can do this in one instruction if ptr is in rsi.
// (This is why p is the second argument to Fn: it's passed in rsi.)
#if defined(__GNUC__) && defined(__x86_64__)
void* rax;
__asm__("lodsq" : "=a"(rax), "+S"(*ptr));
return rax;
#else
return *(*ptr)++;
#endif
}
// Stages are logically a pipeline, and physically are contiguous in an array.
// To get to the next stage, we just increment our pointer to the next array element.
SI void SK_VECTORCALL next(size_t x_tail, void** p, SkNf r, SkNf g, SkNf b, SkNf a,
SkNf dr, SkNf dg, SkNf db, SkNf da) {
auto next = (Fn)load_and_increment(&p);
next(x_tail,p, r,g,b,a, dr,dg,db,da);
}
// Stages defined below always call next.
// This is always the last stage, a backstop that actually returns to the caller when done.
SI void SK_VECTORCALL just_return(size_t, void**, SkNf, SkNf, SkNf, SkNf,
SkNf, SkNf, SkNf, SkNf) {}
#define STAGE(name) \
static SK_ALWAYS_INLINE void name##_kernel(size_t x, size_t tail, \
SkNf& r, SkNf& g, SkNf& b, SkNf& a, \
SkNf& dr, SkNf& dg, SkNf& db, SkNf& da); \
SI void SK_VECTORCALL name(size_t x_tail, void** p, \
SkNf r, SkNf g, SkNf b, SkNf a, \
SkNf dr, SkNf dg, SkNf db, SkNf da) { \
name##_kernel(x_tail/N, x_tail%N, r,g,b,a, dr,dg,db,da); \
next(x_tail,p, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE void name##_kernel(size_t x, size_t tail, \
SkNf& r, SkNf& g, SkNf& b, SkNf& a, \
SkNf& dr, SkNf& dg, SkNf& db, SkNf& da)
#define STAGE_CTX(name, Ctx) \
static SK_ALWAYS_INLINE void name##_kernel(Ctx ctx, size_t x, size_t tail, \
SkNf& r, SkNf& g, SkNf& b, SkNf& a, \
SkNf& dr, SkNf& dg, SkNf& db, SkNf& da); \
SI void SK_VECTORCALL name(size_t x_tail, void** p, \
SkNf r, SkNf g, SkNf b, SkNf a, \
SkNf dr, SkNf dg, SkNf db, SkNf da) { \
auto ctx = (Ctx)load_and_increment(&p); \
name##_kernel(ctx, x_tail/N, x_tail%N, r,g,b,a, dr,dg,db,da); \
next(x_tail,p, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE void name##_kernel(Ctx ctx, size_t x, size_t tail, \
SkNf& r, SkNf& g, SkNf& b, SkNf& a, \
SkNf& dr, SkNf& dg, SkNf& db, SkNf& da)
// Many xfermodes apply the same logic to each channel.
#define RGBA_XFERMODE(name) \
static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \
const SkNf& d, const SkNf& da); \
SI void SK_VECTORCALL name(size_t x_tail, void** p, \
SkNf r, SkNf g, SkNf b, SkNf a, \
SkNf dr, SkNf dg, SkNf db, SkNf da) { \
r = name##_kernel(r,a,dr,da); \
g = name##_kernel(g,a,dg,da); \
b = name##_kernel(b,a,db,da); \
a = name##_kernel(a,a,da,da); \
next(x_tail,p, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \
const SkNf& d, const SkNf& da)
// Most of the rest apply the same logic to color channels and use srcover's alpha logic.
#define RGB_XFERMODE(name) \
static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \
const SkNf& d, const SkNf& da); \
SI void SK_VECTORCALL name(size_t x_tail, void** p, \
SkNf r, SkNf g, SkNf b, SkNf a, \
SkNf dr, SkNf dg, SkNf db, SkNf da) { \
r = name##_kernel(r,a,dr,da); \
g = name##_kernel(g,a,dg,da); \
b = name##_kernel(b,a,db,da); \
a = a + (da * (1.0f-a)); \
next(x_tail,p, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \
const SkNf& d, const SkNf& da)
template <typename T>
SI SkNx<N,T> load(size_t tail, const T* src) {
if (tail) {
T buf[8] = {0};
switch (tail & (N-1)) {
case 7: buf[6] = src[6];
case 6: buf[5] = src[5];
case 5: buf[4] = src[4];
case 4: buf[3] = src[3];
case 3: buf[2] = src[2];
case 2: buf[1] = src[1];
}
buf[0] = src[0];
return SkNx<N,T>::Load(buf);
}
return SkNx<N,T>::Load(src);
}
template <typename T>
SI SkNx<N,T> gather(size_t tail, const T* src, const SkNi& offset) {
if (tail) {
T buf[8] = {0};
switch (tail & (N-1)) {
case 7: buf[6] = src[offset[6]];
case 6: buf[5] = src[offset[5]];
case 5: buf[4] = src[offset[4]];
case 4: buf[3] = src[offset[3]];
case 3: buf[2] = src[offset[2]];
case 2: buf[1] = src[offset[1]];
}
buf[0] = src[offset[0]];
return SkNx<N,T>::Load(buf);
}
T buf[8];
for (size_t i = 0; i < N; i++) {
buf[i] = src[offset[i]];
}
return SkNx<N,T>::Load(buf);
}
template <typename T>
SI void store(size_t tail, const SkNx<N,T>& v, T* dst) {
if (tail) {
switch (tail & (N-1)) {
case 7: dst[6] = v[6];
case 6: dst[5] = v[5];
case 5: dst[4] = v[4];
case 4: dst[3] = v[3];
case 3: dst[2] = v[2];
case 2: dst[1] = v[1];
}
dst[0] = v[0];
return;
}
v.store(dst);
}
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
SI __m256i mask(size_t tail) {
static const int masks[][8] = {
{~0,~0,~0,~0, ~0,~0,~0,~0 }, // remember, tail == 0 ~~> load all N
{~0, 0, 0, 0, 0, 0, 0, 0 },
{~0,~0, 0, 0, 0, 0, 0, 0 },
{~0,~0,~0, 0, 0, 0, 0, 0 },
{~0,~0,~0,~0, 0, 0, 0, 0 },
{~0,~0,~0,~0, ~0, 0, 0, 0 },
{~0,~0,~0,~0, ~0,~0, 0, 0 },
{~0,~0,~0,~0, ~0,~0,~0, 0 },
};
return SkNi::Load(masks + tail).fVec;
}
SI SkNi load(size_t tail, const int32_t* src) {
return tail ? _mm256_maskload_epi32((const int*)src, mask(tail))
: SkNi::Load(src);
}
SI SkNu load(size_t tail, const uint32_t* src) {
return tail ? _mm256_maskload_epi32((const int*)src, mask(tail))
: SkNu::Load(src);
}
SI SkNf load(size_t tail, const float* src) {
return tail ? _mm256_maskload_ps((const float*)src, mask(tail))
: SkNf::Load(src);
}
SI SkNi gather(size_t tail, const int32_t* src, const SkNi& offset) {
auto m = mask(tail);
return _mm256_mask_i32gather_epi32(SkNi(0).fVec, (const int*)src, offset.fVec, m, 4);
}
SI SkNu gather(size_t tail, const uint32_t* src, const SkNi& offset) {
auto m = mask(tail);
return _mm256_mask_i32gather_epi32(SkNi(0).fVec, (const int*)src, offset.fVec, m, 4);
}
SI SkNf gather(size_t tail, const float* src, const SkNi& offset) {
auto m = _mm256_castsi256_ps(mask(tail));
return _mm256_mask_i32gather_ps(SkNf(0).fVec, (const float*)src, offset.fVec, m, 4);
}
static const char* bug = "I don't think MSAN understands maskstore.";
SI void store(size_t tail, const SkNi& v, int32_t* dst) {
if (tail) {
_mm256_maskstore_epi32((int*)dst, mask(tail), v.fVec);
return sk_msan_mark_initialized(dst, dst+tail, bug);
}
v.store(dst);
}
SI void store(size_t tail, const SkNu& v, uint32_t* dst) {
if (tail) {
_mm256_maskstore_epi32((int*)dst, mask(tail), v.fVec);
return sk_msan_mark_initialized(dst, dst+tail, bug);
}
v.store(dst);
}
SI void store(size_t tail, const SkNf& v, float* dst) {
if (tail) {
_mm256_maskstore_ps((float*)dst, mask(tail), v.fVec);
return sk_msan_mark_initialized(dst, dst+tail, bug);
}
v.store(dst);
}
#endif
SI SkNf SkNf_fma(const SkNf& f, const SkNf& m, const SkNf& a) { return SkNx_fma(f,m,a); }
SI SkNi SkNf_round(const SkNf& x, const SkNf& scale) {
// Every time I try, _mm_cvtps_epi32 benches as slower than using FMA and _mm_cvttps_epi32. :/
return SkNx_cast<int>(SkNf_fma(x,scale, 0.5f));
}
SI SkNf SkNf_from_byte(const SkNi& x) {
// Same trick as in store_8888: 0x470000BB == 32768.0f + BB/256.0f for all bytes BB.
auto v = 0x47000000 | x;
// Read this as (pun_float(v) - 32768.0f) * (256/255.0f), redistributed to be an FMA.
return SkNf_fma(SkNf::Load(&v), 256/255.0f, -32768*256/255.0f);
}
SI SkNf SkNf_from_byte(const SkNu& x) { return SkNf_from_byte(SkNi::Load(&x)); }
SI SkNf SkNf_from_byte(const SkNb& x) { return SkNf_from_byte(SkNx_cast<int>(x)); }
SI void from_8888(const SkNu& _8888, SkNf* r, SkNf* g, SkNf* b, SkNf* a) {
*r = SkNf_from_byte((_8888 ) & 0xff);
*g = SkNf_from_byte((_8888 >> 8) & 0xff);
*b = SkNf_from_byte((_8888 >> 16) & 0xff);
*a = SkNf_from_byte((_8888 >> 24) );
}
SI void from_4444(const SkNh& _4444, SkNf* r, SkNf* g, SkNf* b, SkNf* a) {
auto _32_bit = SkNx_cast<int>(_4444);
*r = SkNx_cast<float>(_32_bit & (0xF << SK_R4444_SHIFT)) * (1.0f / (0xF << SK_R4444_SHIFT));
*g = SkNx_cast<float>(_32_bit & (0xF << SK_G4444_SHIFT)) * (1.0f / (0xF << SK_G4444_SHIFT));
*b = SkNx_cast<float>(_32_bit & (0xF << SK_B4444_SHIFT)) * (1.0f / (0xF << SK_B4444_SHIFT));
*a = SkNx_cast<float>(_32_bit & (0xF << SK_A4444_SHIFT)) * (1.0f / (0xF << SK_A4444_SHIFT));
}
SI void from_565(const SkNh& _565, SkNf* r, SkNf* g, SkNf* b) {
auto _32_bit = SkNx_cast<int>(_565);
*r = SkNx_cast<float>(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE);
*g = SkNx_cast<float>(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE);
*b = SkNx_cast<float>(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE);
}
SI void from_f16(const void* px, SkNf* r, SkNf* g, SkNf* b, SkNf* a) {
SkNh rh, gh, bh, ah;
SkNh::Load4(px, &rh, &gh, &bh, &ah);
*r = SkHalfToFloat_finite_ftz(rh);
*g = SkHalfToFloat_finite_ftz(gh);
*b = SkHalfToFloat_finite_ftz(bh);
*a = SkHalfToFloat_finite_ftz(ah);
}
STAGE_CTX(trace, const char*) {
SkDebugf("%s\n", ctx);
}
STAGE(registers) {
auto print = [](const char* name, const SkNf& v) {
SkDebugf("%s:", name);
for (int i = 0; i < N; i++) {
SkDebugf(" %g", v[i]);
}
SkDebugf("\n");
};
print(" r", r);
print(" g", g);
print(" b", b);
print(" a", a);
print("dr", dr);
print("dg", dg);
print("db", db);
print("da", da);
}
STAGE(clamp_0) {
a = SkNf::Max(a, 0.0f);
r = SkNf::Max(r, 0.0f);
g = SkNf::Max(g, 0.0f);
b = SkNf::Max(b, 0.0f);
}
STAGE(clamp_1) {
a = SkNf::Min(a, 1.0f);
r = SkNf::Min(r, 1.0f);
g = SkNf::Min(g, 1.0f);
b = SkNf::Min(b, 1.0f);
}
STAGE(clamp_a) {
a = SkNf::Min(a, 1.0f);
r = SkNf::Min(r, a);
g = SkNf::Min(g, a);
b = SkNf::Min(b, a);
}
STAGE(unpremul) {
auto scale = (a == 0.0f).thenElse(0.0f, 1.0f/a);
r *= scale;
g *= scale;
b *= scale;
}
STAGE(premul) {
r *= a;
g *= a;
b *= a;
}
STAGE_CTX(set_rgb, const float*) {
r = ctx[0];
g = ctx[1];
b = ctx[2];
}
STAGE(swap_rb) { SkTSwap(r,b); }
STAGE(move_src_dst) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(swap) {
SkTSwap(r,dr);
SkTSwap(g,dg);
SkTSwap(b,db);
SkTSwap(a,da);
}
STAGE(from_srgb) {
r = sk_linear_from_srgb_math(r);
g = sk_linear_from_srgb_math(g);
b = sk_linear_from_srgb_math(b);
}
STAGE(to_srgb) {
r = sk_linear_to_srgb_needs_round(r);
g = sk_linear_to_srgb_needs_round(g);
b = sk_linear_to_srgb_needs_round(b);
}
STAGE(from_2dot2) {
auto from_2dot2 = [](const SkNf& x) {
// x^(141/64) = x^(2.20312) is a great approximation of the true value, x^(2.2).
// (note: x^(35/16) = x^(2.1875) is an okay one as well and would be quicker)
auto x16 = x.rsqrt().rsqrt().rsqrt().rsqrt(); // x^(1/16) = x^(4/64);
auto x64 = x16.rsqrt().rsqrt(); // x^(1/64)
// x^(141/64) = x^(128/64) * x^(12/64) * x^(1/64)
return SkNf::Max((x*x) * (x16*x16*x16) * (x64), 0.0f);
};
r = from_2dot2(r);
g = from_2dot2(g);
b = from_2dot2(b);
}
STAGE(to_2dot2) {
auto to_2dot2 = [](const SkNf& x) {
// x^(29/64) is a very good approximation of the true value, x^(1/2.2).
auto x2 = x.rsqrt(), // x^(-1/2)
x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32)
x64 = x32.rsqrt(); // x^(+1/64)
// 29 = 32 - 2 - 1
return SkNf::Max(x2.invert() * x32 * x64.invert(), 0.0f); // Watch out for NaN.
};
r = to_2dot2(r);
g = to_2dot2(g);
b = to_2dot2(b);
}
// The default shader produces a constant color (from the SkPaint).
STAGE_CTX(constant_color, const SkPM4f*) {
r = ctx->r();
g = ctx->g();
b = ctx->b();
a = ctx->a();
}
// s' = sc for a scalar c.
STAGE_CTX(scale_1_float, const float*) {
SkNf c = *ctx;
r *= c;
g *= c;
b *= c;
a *= c;
}
// s' = sc for 8-bit c.
STAGE_CTX(scale_u8, const uint8_t**) {
auto ptr = *ctx + x;
SkNf c = SkNf_from_byte(load(tail, ptr));
r = r*c;
g = g*c;
b = b*c;
a = a*c;
}
SI SkNf lerp(const SkNf& from, const SkNf& to, const SkNf& cov) {
return SkNf_fma(to-from, cov, from);
}
// s' = d(1-c) + sc, for a scalar c.
STAGE_CTX(lerp_1_float, const float*) {
SkNf c = *ctx;
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = d(1-c) + sc for 8-bit c.
STAGE_CTX(lerp_u8, const uint8_t**) {
auto ptr = *ctx + x;
SkNf c = SkNf_from_byte(load(tail, ptr));
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = d(1-c) + sc for 565 c.
STAGE_CTX(lerp_565, const uint16_t**) {
auto ptr = *ctx + x;
SkNf cr, cg, cb;
from_565(load(tail, ptr), &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = 1.0f;
}
STAGE_CTX(load_a8, const uint8_t**) {
auto ptr = *ctx + x;
r = g = b = 0.0f;
a = SkNf_from_byte(load(tail, ptr));
}
STAGE_CTX(store_a8, uint8_t**) {
auto ptr = *ctx + x;
store(tail, SkNx_cast<uint8_t>(SkNf_round(255.0f, a)), ptr);
}
STAGE_CTX(load_565, const uint16_t**) {
auto ptr = *ctx + x;
from_565(load(tail, ptr), &r,&g,&b);
a = 1.0f;
}
STAGE_CTX(store_565, uint16_t**) {
auto ptr = *ctx + x;
store(tail, SkNx_cast<uint16_t>( SkNf_round(r, SK_R16_MASK) << SK_R16_SHIFT
| SkNf_round(g, SK_G16_MASK) << SK_G16_SHIFT
| SkNf_round(b, SK_B16_MASK) << SK_B16_SHIFT), ptr);
}
STAGE_CTX(load_f16, const uint64_t**) {
auto ptr = *ctx + x;
const void* src = ptr;
SkNx<N, uint64_t> px;
if (tail) {
px = load(tail, ptr);
src = &px;
}
from_f16(src, &r, &g, &b, &a);
}
STAGE_CTX(store_f16, uint64_t**) {
auto ptr = *ctx + x;
SkNx<N, uint64_t> px;
SkNh::Store4(tail ? (void*)&px : (void*)ptr, SkFloatToHalf_finite_ftz(r),
SkFloatToHalf_finite_ftz(g),
SkFloatToHalf_finite_ftz(b),
SkFloatToHalf_finite_ftz(a));
if (tail) {
store(tail, px, ptr);
}
}
STAGE_CTX(store_f32, SkPM4f**) {
auto ptr = *ctx + x;
SkNx<N, SkPM4f> px;
SkNf::Store4(tail ? (void*)&px : (void*)ptr, r,g,b,a);
if (tail) {
store(tail, px, ptr);
}
}
STAGE_CTX(load_8888, const uint32_t**) {
auto ptr = *ctx + x;
from_8888(load(tail, ptr), &r, &g, &b, &a);
}
STAGE_CTX(store_8888, uint32_t**) {
auto byte = [](const SkNf& x, int ix) {
// Here's a neat trick: 0x47000000 == 32768.0f, and 0x470000ff == 32768.0f + (255/256.0f).
auto v = SkNf_fma(255/256.0f, x, 32768.0f);
switch (ix) {
case 0: return SkNi::Load(&v) & 0xff; // R
case 3: return SkNi::Load(&v) << 24; // A
}
return (SkNi::Load(&v) & 0xff) << (8*ix); // B or G
};
auto ptr = *ctx + x;
store(tail, byte(r,0)|byte(g,1)|byte(b,2)|byte(a,3), (int*)ptr);
}
STAGE_CTX(load_u16_be, const uint64_t**) {
auto ptr = *ctx + x;
const void* src = ptr;
SkNx<N, uint64_t> px;
if (tail) {
px = load(tail, ptr);
src = &px;
}
SkNh rh, gh, bh, ah;
SkNh::Load4(src, &rh, &gh, &bh, &ah);
r = (1.0f / 65535.0f) * SkNx_cast<float>((rh << 8) | (rh >> 8));
g = (1.0f / 65535.0f) * SkNx_cast<float>((gh << 8) | (gh >> 8));
b = (1.0f / 65535.0f) * SkNx_cast<float>((bh << 8) | (bh >> 8));
a = (1.0f / 65535.0f) * SkNx_cast<float>((ah << 8) | (ah >> 8));
}
STAGE_CTX(load_tables, const LoadTablesContext*) {
auto ptr = (const uint32_t*)ctx->fSrc + x;
SkNu rgba = load(tail, ptr);
auto to_int = [](const SkNu& v) { return SkNi::Load(&v); };
r = gather(tail, ctx->fR, to_int((rgba >> 0) & 0xff));
g = gather(tail, ctx->fG, to_int((rgba >> 8) & 0xff));
b = gather(tail, ctx->fB, to_int((rgba >> 16) & 0xff));
a = SkNf_from_byte(rgba >> 24);
}
STAGE_CTX(load_tables_u16_be, const LoadTablesContext*) {
auto ptr = (const uint64_t*)ctx->fSrc + x;
const void* src = ptr;
SkNx<N, uint64_t> px;
if (tail) {
px = load(tail, ptr);
src = &px;
}
SkNh rh, gh, bh, ah;
SkNh::Load4(src, &rh, &gh, &bh, &ah);
// ctx->fSrc is big-endian, so "& 0xff" grabs the 8 most significant bits of each component.
r = gather(tail, ctx->fR, SkNx_cast<int>(rh & 0xff));
g = gather(tail, ctx->fG, SkNx_cast<int>(gh & 0xff));
b = gather(tail, ctx->fB, SkNx_cast<int>(bh & 0xff));
a = (1.0f / 65535.0f) * SkNx_cast<float>((ah << 8) | (ah >> 8));
}
STAGE_CTX(store_tables, const StoreTablesContext*) {
auto ptr = ctx->fDst + x;
float scale = ctx->fCount - 1;
SkNi ri = SkNf_round(scale, r);
SkNi gi = SkNf_round(scale, g);
SkNi bi = SkNf_round(scale, b);
store(tail, ( SkNx_cast<int>(gather(tail, ctx->fR, ri)) << 0
| SkNx_cast<int>(gather(tail, ctx->fG, gi)) << 8
| SkNx_cast<int>(gather(tail, ctx->fB, bi)) << 16
| SkNf_round(255.0f, a) << 24), (int*)ptr);
}
SI SkNf inv(const SkNf& x) { return 1.0f - x; }
RGBA_XFERMODE(clear) { return 0.0f; }
RGBA_XFERMODE(srcatop) { return s*da + d*inv(sa); }
RGBA_XFERMODE(srcin) { return s * da; }
RGBA_XFERMODE(srcout) { return s * inv(da); }
RGBA_XFERMODE(srcover) { return SkNf_fma(d, inv(sa), s); }
RGBA_XFERMODE(dstatop) { return srcatop_kernel(d,da,s,sa); }
RGBA_XFERMODE(dstin) { return srcin_kernel (d,da,s,sa); }
RGBA_XFERMODE(dstout) { return srcout_kernel (d,da,s,sa); }
RGBA_XFERMODE(dstover) { return srcover_kernel(d,da,s,sa); }
RGBA_XFERMODE(modulate) { return s*d; }
RGBA_XFERMODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
RGBA_XFERMODE(plus_) { return s + d; }
RGBA_XFERMODE(screen) { return s + d - s*d; }
RGBA_XFERMODE(xor_) { return s*inv(da) + d*inv(sa); }
RGB_XFERMODE(colorburn) {
return (d == da ).thenElse(d + s*inv(da),
(s == 0.0f).thenElse(s + d*inv(sa),
sa*(da - SkNf::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
}
RGB_XFERMODE(colordodge) {
return (d == 0.0f).thenElse(d + s*inv(da),
(s == sa ).thenElse(s + d*inv(sa),
sa*SkNf::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
}
RGB_XFERMODE(darken) { return s + d - SkNf::Max(s*da, d*sa); }
RGB_XFERMODE(difference) { return s + d - 2.0f*SkNf::Min(s*da,d*sa); }
RGB_XFERMODE(exclusion) { return s + d - 2.0f*s*d; }
RGB_XFERMODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s));
}
RGB_XFERMODE(lighten) { return s + d - SkNf::Min(s*da, d*sa); }
RGB_XFERMODE(overlay) { return hardlight_kernel(d,da,s,sa); }
RGB_XFERMODE(softlight) {
SkNf m = (da > 0.0f).thenElse(d / da, 0.0f),
s2 = 2.0f*s,
m4 = 4.0f*m;
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
SkNf darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = m.rsqrt().invert() - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc); // 1 or (2 or 3)?
}
STAGE(luminance_to_alpha) {
a = SK_LUM_COEFF_R*r + SK_LUM_COEFF_G*g + SK_LUM_COEFF_B*b;
r = g = b = 0;
}
STAGE_CTX(matrix_2x3, const float*) {
auto m = ctx;
auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[2], m[4])),
G = SkNf_fma(r,m[1], SkNf_fma(g,m[3], m[5]));
r = R;
g = G;
}
STAGE_CTX(matrix_3x4, const float*) {
auto m = ctx;
auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[3], SkNf_fma(b,m[6], m[ 9]))),
G = SkNf_fma(r,m[1], SkNf_fma(g,m[4], SkNf_fma(b,m[7], m[10]))),
B = SkNf_fma(r,m[2], SkNf_fma(g,m[5], SkNf_fma(b,m[8], m[11])));
r = R;
g = G;
b = B;
}
STAGE_CTX(matrix_4x5, const float*) {
auto m = ctx;
auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[4], SkNf_fma(b,m[ 8], SkNf_fma(a,m[12], m[16])))),
G = SkNf_fma(r,m[1], SkNf_fma(g,m[5], SkNf_fma(b,m[ 9], SkNf_fma(a,m[13], m[17])))),
B = SkNf_fma(r,m[2], SkNf_fma(g,m[6], SkNf_fma(b,m[10], SkNf_fma(a,m[14], m[18])))),
A = SkNf_fma(r,m[3], SkNf_fma(g,m[7], SkNf_fma(b,m[11], SkNf_fma(a,m[15], m[19]))));
r = R;
g = G;
b = B;
a = A;
}
STAGE_CTX(matrix_perspective, const float*) {
// N.B. unlike the matrix_NxM stages, this takes a row-major matrix.
auto m = ctx;
auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[1], m[2])),
G = SkNf_fma(r,m[3], SkNf_fma(g,m[4], m[5])),
Z = SkNf_fma(r,m[6], SkNf_fma(g,m[7], m[8]));
r = R * Z.invert();
g = G * Z.invert();
}
SI SkNf parametric(const SkNf& v, const SkColorSpaceTransferFn& p) {
float result[N]; // Unconstrained powf() doesn't vectorize well...
for (int i = 0; i < N; i++) {
float s = v[i];
result[i] = (s <= p.fD) ? p.fC * s + p.fF
: powf(s * p.fA + p.fB, p.fG) + p.fE;
}
// Clamp the output to [0, 1].
// Max(NaN, 0) = 0, but Max(0, NaN) = NaN, so we want this exact order to ensure NaN => 0
return SkNf::Min(SkNf::Max(SkNf::Load(result), 0.0f), 1.0f);
}
STAGE_CTX(parametric_r, const SkColorSpaceTransferFn*) { r = parametric(r, *ctx); }
STAGE_CTX(parametric_g, const SkColorSpaceTransferFn*) { g = parametric(g, *ctx); }
STAGE_CTX(parametric_b, const SkColorSpaceTransferFn*) { b = parametric(b, *ctx); }
STAGE_CTX(parametric_a, const SkColorSpaceTransferFn*) { a = parametric(a, *ctx); }
SI SkNf table(const SkNf& v, const SkTableTransferFn& table) {
float result[N];
for (int i = 0; i < N; i++) {
result[i] = interp_lut(v[i], table.fData, table.fSize);
}
// no need to clamp - tables are by-design [0,1] -> [0,1]
return SkNf::Load(result);
}
STAGE_CTX(table_r, const SkTableTransferFn*) { r = table(r, *ctx); }
STAGE_CTX(table_g, const SkTableTransferFn*) { g = table(g, *ctx); }
STAGE_CTX(table_b, const SkTableTransferFn*) { b = table(b, *ctx); }
STAGE_CTX(table_a, const SkTableTransferFn*) { a = table(a, *ctx); }
STAGE_CTX(color_lookup_table, const SkColorLookUpTable*) {
const SkColorLookUpTable* colorLUT = ctx;
SkASSERT(3 == colorLUT->inputChannels() || 4 == colorLUT->inputChannels());
SkASSERT(3 == colorLUT->outputChannels());
float result[3][N];
for (int i = 0; i < N; ++i) {
const float in[4] = { r[i], g[i], b[i], a[i] };
float out[3];
colorLUT->interp(out, in);
for (int j = 0; j < colorLUT->outputChannels(); ++j) {
result[j][i] = out[j];
}
}
r = SkNf::Load(result[0]);
g = SkNf::Load(result[1]);
b = SkNf::Load(result[2]);
if (4 == colorLUT->inputChannels()) {
// we must set the pixel to opaque, as the alpha channel was used
// as input before this.
a = 1.f;
}
}
STAGE(lab_to_xyz) {
const auto lab_l = r * 100.0f;
const auto lab_a = g * 255.0f - 128.0f;
const auto lab_b = b * 255.0f - 128.0f;
auto Y = (lab_l + 16.0f) * (1/116.0f);
auto X = lab_a * (1/500.0f) + Y;
auto Z = Y - (lab_b * (1/200.0f));
const auto X3 = X*X*X;
X = (X3 > 0.008856f).thenElse(X3, (X - (16/116.0f)) * (1/7.787f));
const auto Y3 = Y*Y*Y;
Y = (Y3 > 0.008856f).thenElse(Y3, (Y - (16/116.0f)) * (1/7.787f));
const auto Z3 = Z*Z*Z;
Z = (Z3 > 0.008856f).thenElse(Z3, (Z - (16/116.0f)) * (1/7.787f));
// adjust to D50 illuminant
X *= 0.96422f;
Y *= 1.00000f;
Z *= 0.82521f;
r = X;
g = Y;
b = Z;
}
SI SkNf assert_in_tile(const SkNf& v, float limit) {
for (int i = 0; i < N; i++) {
SkASSERT(0 <= v[i] && v[i] < limit);
}
return v;
}
SI SkNf clamp(const SkNf& v, float limit) {
SkNf result = SkNf::Max(0, SkNf::Min(v, limit - 0.5f));
return assert_in_tile(result, limit);
}
SI SkNf repeat(const SkNf& v, float limit) {
SkNf result = v - (v/limit).floor()*limit;
// For small negative v, (v/limit).floor()*limit can dominate v in the subtraction,
// which leaves result == limit. We want result < limit, so clamp it one ULP.
result = SkNf::Min(result, nextafterf(limit, 0));
return assert_in_tile(result, limit);
}
SI SkNf mirror(const SkNf& v, float l/*imit*/) {
SkNf result = ((v - l) - ((v - l) / (2*l)).floor()*(2*l) - l).abs();
// Same deal as repeat.
result = SkNf::Min(result, nextafterf(l, 0));
return assert_in_tile(result, l);
}
STAGE_CTX( clamp_x, const float*) { r = clamp (r, *ctx); }
STAGE_CTX(repeat_x, const float*) { r = repeat(r, *ctx); }
STAGE_CTX(mirror_x, const float*) { r = mirror(r, *ctx); }
STAGE_CTX( clamp_y, const float*) { g = clamp (g, *ctx); }
STAGE_CTX(repeat_y, const float*) { g = repeat(g, *ctx); }
STAGE_CTX(mirror_y, const float*) { g = mirror(g, *ctx); }
STAGE_CTX(save_xy, SkImageShaderContext*) {
r.store(ctx->x);
g.store(ctx->y);
// Whether bilinear or bicubic, all sample points have the same fractional offset (fx,fy).
// They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
// surrounding (x,y), all (0.5,0.5) off-center.
auto fract = [](const SkNf& v) { return v - v.floor(); };
fract(r + 0.5f).store(ctx->fx);
fract(g + 0.5f).store(ctx->fy);
}
STAGE_CTX(accumulate, const SkImageShaderContext*) {
// Bilinear and bicubic filtering are both separable, so we'll end up with independent
// scale contributions in x and y that we multiply together to get each pixel's scale factor.
auto scale = SkNf::Load(ctx->scalex) * SkNf::Load(ctx->scaley);
dr = SkNf_fma(scale, r, dr);
dg = SkNf_fma(scale, g, dg);
db = SkNf_fma(scale, b, db);
da = SkNf_fma(scale, a, da);
}
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangular area is fx; (1-fx)
// at negative x offsets. The y-axis is treated symmetrically.
template <int Scale>
SI void bilinear_x(SkImageShaderContext* ctx, SkNf* x) {
*x = SkNf::Load(ctx->x) + Scale*0.5f;
auto fx = SkNf::Load(ctx->fx);
(Scale > 0 ? fx : (1.0f - fx)).store(ctx->scalex);
}
template <int Scale>
SI void bilinear_y(SkImageShaderContext* ctx, SkNf* y) {
*y = SkNf::Load(ctx->y) + Scale*0.5f;
auto fy = SkNf::Load(ctx->fy);
(Scale > 0 ? fy : (1.0f - fy)).store(ctx->scaley);
}
STAGE_CTX(bilinear_nx, SkImageShaderContext*) { bilinear_x<-1>(ctx, &r); }
STAGE_CTX(bilinear_px, SkImageShaderContext*) { bilinear_x<+1>(ctx, &r); }
STAGE_CTX(bilinear_ny, SkImageShaderContext*) { bilinear_y<-1>(ctx, &g); }
STAGE_CTX(bilinear_py, SkImageShaderContext*) { bilinear_y<+1>(ctx, &g); }
// In bilinear interpolation, the 16 pixels at +/- 0.5 and +/- 1.5 offsets from the sample
// pixel center are combined with a non-uniform cubic filter, with high filter values near
// the center and lower values farther away.
//
// We break this filter function into two parts, one for near +/- 0.5 offsets,
// and one for far +/- 1.5 offsets.
//
// See GrBicubicEffect for details about this particular Mitchell-Netravali filter.
SI SkNf bicubic_near(const SkNf& t) {
// 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
return SkNf_fma(t, SkNf_fma(t, SkNf_fma(-21/18.0f, t, 27/18.0f), 9/18.0f), 1/18.0f);
}
SI SkNf bicubic_far(const SkNf& t) {
// 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
return (t*t)*SkNf_fma(7/18.0f, t, -6/18.0f);
}
template <int Scale>
SI void bicubic_x(SkImageShaderContext* ctx, SkNf* x) {
*x = SkNf::Load(ctx->x) + Scale*0.5f;
auto fx = SkNf::Load(ctx->fx);
if (Scale == -3) { return bicubic_far (1.0f - fx).store(ctx->scalex); }
if (Scale == -1) { return bicubic_near(1.0f - fx).store(ctx->scalex); }
if (Scale == +1) { return bicubic_near( fx).store(ctx->scalex); }
if (Scale == +3) { return bicubic_far ( fx).store(ctx->scalex); }
SkDEBUGFAIL("unreachable");
}
template <int Scale>
SI void bicubic_y(SkImageShaderContext* ctx, SkNf* y) {
*y = SkNf::Load(ctx->y) + Scale*0.5f;
auto fy = SkNf::Load(ctx->fy);
if (Scale == -3) { return bicubic_far (1.0f - fy).store(ctx->scaley); }
if (Scale == -1) { return bicubic_near(1.0f - fy).store(ctx->scaley); }
if (Scale == +1) { return bicubic_near( fy).store(ctx->scaley); }
if (Scale == +3) { return bicubic_far ( fy).store(ctx->scaley); }
SkDEBUGFAIL("unreachable");
}
STAGE_CTX(bicubic_n3x, SkImageShaderContext*) { bicubic_x<-3>(ctx, &r); }
STAGE_CTX(bicubic_n1x, SkImageShaderContext*) { bicubic_x<-1>(ctx, &r); }
STAGE_CTX(bicubic_p1x, SkImageShaderContext*) { bicubic_x<+1>(ctx, &r); }
STAGE_CTX(bicubic_p3x, SkImageShaderContext*) { bicubic_x<+3>(ctx, &r); }
STAGE_CTX(bicubic_n3y, SkImageShaderContext*) { bicubic_y<-3>(ctx, &g); }
STAGE_CTX(bicubic_n1y, SkImageShaderContext*) { bicubic_y<-1>(ctx, &g); }
STAGE_CTX(bicubic_p1y, SkImageShaderContext*) { bicubic_y<+1>(ctx, &g); }
STAGE_CTX(bicubic_p3y, SkImageShaderContext*) { bicubic_y<+3>(ctx, &g); }
template <typename T>
SI SkNi offset_and_ptr(T** ptr, const SkImageShaderContext* ctx, const SkNf& x, const SkNf& y) {
SkNi ix = SkNx_cast<int>(x),
iy = SkNx_cast<int>(y);
SkNi offset = iy*ctx->stride + ix;
*ptr = (const T*)ctx->pixels;
return offset;
}
STAGE_CTX(gather_a8, const SkImageShaderContext*) {
const uint8_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
r = g = b = 0.0f;
a = SkNf_from_byte(gather(tail, p, offset));
}
STAGE_CTX(gather_i8, const SkImageShaderContext*) {
const uint8_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
SkNi ix = SkNx_cast<int>(gather(tail, p, offset));
from_8888(gather(tail, ctx->ctable->readColors(), ix), &r, &g, &b, &a);
}
STAGE_CTX(gather_g8, const SkImageShaderContext*) {
const uint8_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
r = g = b = SkNf_from_byte(gather(tail, p, offset));
a = 1.0f;
}
STAGE_CTX(gather_565, const SkImageShaderContext*) {
const uint16_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
from_565(gather(tail, p, offset), &r, &g, &b);
a = 1.0f;
}
STAGE_CTX(gather_4444, const SkImageShaderContext*) {
const uint16_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
from_4444(gather(tail, p, offset), &r, &g, &b, &a);
}
STAGE_CTX(gather_8888, const SkImageShaderContext*) {
const uint32_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
from_8888(gather(tail, p, offset), &r, &g, &b, &a);
}
STAGE_CTX(gather_f16, const SkImageShaderContext*) {
const uint64_t* p;
SkNi offset = offset_and_ptr(&p, ctx, r, g);
auto px = gather(tail, p, offset);
from_f16(&px, &r, &g, &b, &a);
}
SI Fn enum_to_Fn(SkRasterPipeline::StockStage st) {
switch (st) {
#define M(stage) case SkRasterPipeline::stage: return stage;
SK_RASTER_PIPELINE_STAGES(M)
#undef M
}
SkASSERT(false);
return just_return;
}
namespace {
static void build_program(void** program, const SkRasterPipeline::Stage* stages, int nstages) {
for (int i = 0; i < nstages; i++) {
*program++ = (void*)enum_to_Fn(stages[i].stage);
if (stages[i].ctx) {
*program++ = stages[i].ctx;
}
}
*program++ = (void*)just_return;
}
static void run_program(void** program, size_t x, size_t y, size_t n) {
float dx[] = { 0,1,2,3,4,5,6,7 };
SkNf X = SkNf(x) + SkNf::Load(dx) + 0.5f,
Y = SkNf(y) + 0.5f,
_0 = SkNf(0),
_1 = SkNf(1);
auto start = (Fn)load_and_increment(&program);
while (n >= N) {
start(x*N, program, X,Y,_1,_0, _0,_0,_0,_0);
X += (float)N;
x += N;
n -= N;
}
if (n) {
start(x*N+n, program, X,Y,_1,_0, _0,_0,_0,_0);
}
}
// Compiled manages its memory manually because it's not safe to use
// std::vector, SkTDArray, etc without setting us up for big ODR violations.
struct Compiled {
Compiled(const SkRasterPipeline::Stage* stages, int nstages) {
int slots = nstages + 1; // One extra for just_return.
for (int i = 0; i < nstages; i++) {
if (stages[i].ctx) {
slots++;
}
}
fProgram = (void**)sk_malloc_throw(slots * sizeof(void*));
build_program(fProgram, stages, nstages);
}
~Compiled() { sk_free(fProgram); }
Compiled(const Compiled& o) {
int slots = 0;
while (o.fProgram[slots++] != (void*)just_return);
fProgram = (void**)sk_malloc_throw(slots * sizeof(void*));
memcpy(fProgram, o.fProgram, slots * sizeof(void*));
}
void operator()(size_t x, size_t y, size_t n) {
run_program(fProgram, x, y, n);
}
void** fProgram;
};
}
namespace SK_OPTS_NS {
SI std::function<void(size_t, size_t, size_t)>
compile_pipeline(const SkRasterPipeline::Stage* stages, int nstages) {
return Compiled{stages,nstages};
}
SI void run_pipeline(size_t x, size_t y, size_t n,
const SkRasterPipeline::Stage* stages, int nstages) {
static const int kStackMax = 256;
// Worst case is nstages stages with nstages context pointers, and just_return.
if (2*nstages+1 <= kStackMax) {
void* program[kStackMax];
build_program(program, stages, nstages);
run_program(program, x,y,n);
} else {
Compiled{stages,nstages}(x,y,n);
}
}
} // namespace SK_OPTS_NS
#undef SI
#undef STAGE
#undef STAGE_CTX
#undef RGBA_XFERMODE
#undef RGB_XFERMODE
#endif//SkRasterPipeline_opts_DEFINED