blob: b4e1ec3e4c170478af849d65295210b04461b2e7 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrConvolutionEffect.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "../private/GrGLSL.h"
// For brevity
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
class GrGLConvolutionEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor&) override;
private:
UniformHandle fKernelUni;
UniformHandle fImageIncrementUni;
UniformHandle fBoundsUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrGLConvolutionEffect::emitCode(EmitArgs& args) {
const GrConvolutionEffect& ce = args.fFp.cast<GrConvolutionEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
if (ce.useBounds()) {
fBoundsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Bounds");
}
int width = Gr1DKernelEffect::WidthFromRadius(ce.radius());
int arrayCount = (width + 3) / 4;
SkASSERT(4 * arrayCount >= width);
fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Kernel", arrayCount);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
fragBuilder->codeAppendf("%s = vec4(0, 0, 0, 0);", args.fOutputColor);
const GrShaderVar& kernel = uniformHandler->getUniformVariable(fKernelUni);
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
fragBuilder->codeAppendf("vec2 coord = %s - %d.0 * %s;", coords2D.c_str(), ce.radius(), imgInc);
// Manually unroll loop because some drivers don't; yields 20-30% speedup.
const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" };
for (int i = 0; i < width; i++) {
SkString index;
SkString kernelIndex;
index.appendS32(i/4);
kernel.appendArrayAccess(index.c_str(), &kernelIndex);
kernelIndex.append(kVecSuffix[i & 0x3]);
if (ce.useBounds()) {
// We used to compute a bool indicating whether we're in bounds or not, cast it to a
// float, and then mul weight*texture_sample by the float. However, the Adreno 430 seems
// to have a bug that caused corruption.
const char* bounds = uniformHandler->getUniformCStr(fBoundsUni);
const char* component = ce.direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x";
fragBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {",
component, bounds, component, bounds);
}
fragBuilder->codeAppendf("\t\t%s += ", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord");
fragBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str());
if (ce.useBounds()) {
fragBuilder->codeAppend("}");
}
fragBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& processor) {
const GrConvolutionEffect& conv = processor.cast<GrConvolutionEffect>();
GrTexture& texture = *conv.textureSampler(0).texture();
float imageIncrement[2] = { 0 };
float ySign = texture.origin() != kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f;
switch (conv.direction()) {
case Gr1DKernelEffect::kX_Direction:
imageIncrement[0] = 1.0f / texture.width();
break;
case Gr1DKernelEffect::kY_Direction:
imageIncrement[1] = ySign / texture.height();
break;
default:
SkFAIL("Unknown filter direction.");
}
pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
if (conv.useBounds()) {
const float* bounds = conv.bounds();
if (Gr1DKernelEffect::kY_Direction == conv.direction() &&
texture.origin() != kTopLeft_GrSurfaceOrigin) {
pdman.set2f(fBoundsUni, 1.0f - bounds[1], 1.0f - bounds[0]);
} else {
pdman.set2f(fBoundsUni, bounds[0], bounds[1]);
}
}
int width = Gr1DKernelEffect::WidthFromRadius(conv.radius());
int arrayCount = (width + 3) / 4;
SkASSERT(4 * arrayCount >= width);
pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
}
void GrGLConvolutionEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&,
GrProcessorKeyBuilder* b) {
const GrConvolutionEffect& conv = processor.cast<GrConvolutionEffect>();
uint32_t key = conv.radius();
key <<= 2;
if (conv.useBounds()) {
key |= 0x2;
key |= GrConvolutionEffect::kY_Direction == conv.direction() ? 0x1 : 0x0;
}
b->add32(key);
}
///////////////////////////////////////////////////////////////////////////////
GrConvolutionEffect::GrConvolutionEffect(GrTexture* texture,
Direction direction,
int radius,
const float* kernel,
bool useBounds,
float bounds[2])
: INHERITED(texture, direction, radius), fUseBounds(useBounds) {
this->initClassID<GrConvolutionEffect>();
SkASSERT(radius <= kMaxKernelRadius);
SkASSERT(kernel);
int width = this->width();
for (int i = 0; i < width; i++) {
fKernel[i] = kernel[i];
}
memcpy(fBounds, bounds, sizeof(fBounds));
}
GrConvolutionEffect::GrConvolutionEffect(GrTexture* texture,
Direction direction,
int radius,
float gaussianSigma,
bool useBounds,
float bounds[2])
: INHERITED(texture, direction, radius), fUseBounds(useBounds) {
this->initClassID<GrConvolutionEffect>();
SkASSERT(radius <= kMaxKernelRadius);
int width = this->width();
float sum = 0.0f;
float denom = 1.0f / (2.0f * gaussianSigma * gaussianSigma);
for (int i = 0; i < width; ++i) {
float x = static_cast<float>(i - this->radius());
// Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
// is dropped here, since we renormalize the kernel below.
fKernel[i] = sk_float_exp(- x * x * denom);
sum += fKernel[i];
}
// Normalize the kernel
float scale = 1.0f / sum;
for (int i = 0; i < width; ++i) {
fKernel[i] *= scale;
}
memcpy(fBounds, bounds, sizeof(fBounds));
}
GrConvolutionEffect::~GrConvolutionEffect() {
}
void GrConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLConvolutionEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrConvolutionEffect::onCreateGLSLInstance() const {
return new GrGLConvolutionEffect;
}
bool GrConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrConvolutionEffect& s = sBase.cast<GrConvolutionEffect>();
return (this->radius() == s.radius() &&
this->direction() == s.direction() &&
this->useBounds() == s.useBounds() &&
0 == memcmp(fBounds, s.fBounds, sizeof(fBounds)) &&
0 == memcmp(fKernel, s.fKernel, this->width() * sizeof(float)));
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConvolutionEffect);
sk_sp<GrFragmentProcessor> GrConvolutionEffect::TestCreate(GrProcessorTestData* d) {
int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
GrProcessorUnitTest::kAlphaTextureIdx;
Direction dir = d->fRandom->nextBool() ? kX_Direction : kY_Direction;
int radius = d->fRandom->nextRangeU(1, kMaxKernelRadius);
float kernel[kMaxKernelWidth];
for (size_t i = 0; i < SK_ARRAY_COUNT(kernel); ++i) {
kernel[i] = d->fRandom->nextSScalar1();
}
float bounds[2];
for (size_t i = 0; i < SK_ARRAY_COUNT(bounds); ++i) {
bounds[i] = d->fRandom->nextF();
}
bool useBounds = d->fRandom->nextBool();
return GrConvolutionEffect::Make(d->fTextures[texIdx],
dir,
radius,
kernel,
useBounds,
bounds);
}