blob: 04f54a6a9b927c17a181d914705904f60ce5fa5a [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include <memory>
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrFragmentProcessor.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/GrXferProcessor.h"
#include "src/gpu/effects/GrTextureEffect.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/dsl/priv/DSLFPs.h"
const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrProgramDesc& desc,
const GrProgramInfo& programInfo)
: fVS(this)
, fFS(this)
, fDesc(desc)
, fProgramInfo(programInfo)
, fNumFragmentSamplers(0) {}
GrGLSLProgramBuilder::~GrGLSLProgramBuilder() = default;
void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders,
uint32_t featureBit,
const char* extensionName) {
if (shaders & kVertex_GrShaderFlag) {
fVS.addFeature(featureBit, extensionName);
}
if (shaders & kFragment_GrShaderFlag) {
fFS.addFeature(featureBit, extensionName);
}
}
bool GrGLSLProgramBuilder::emitAndInstallProcs() {
// First we loop over all of the installed processors and collect coord transforms. These will
// be sent to the ProgramImpl in its emitCode function
SkSL::dsl::Start(this->shaderCompiler());
SkString inputColor;
SkString inputCoverage;
if (!this->emitAndInstallPrimProc(&inputColor, &inputCoverage)) {
return false;
}
if (!this->emitAndInstallDstTexture()) {
return false;
}
if (!this->emitAndInstallFragProcs(&inputColor, &inputCoverage)) {
return false;
}
if (!this->emitAndInstallXferProc(inputColor, inputCoverage)) {
return false;
}
fGPImpl->emitTransformCode(&fVS, this->uniformHandler());
SkSL::dsl::End();
return this->checkSamplerCounts();
}
bool GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, SkString* outputCoverage) {
const GrGeometryProcessor& geomProc = this->geometryProcessor();
// Program builders have a bit of state we need to clear with each effect
this->advanceStage();
this->nameExpression(outputColor, "outputColor");
this->nameExpression(outputCoverage, "outputCoverage");
SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
GrShaderFlags rtAdjustVisibility;
if (geomProc.willUseTessellationShaders()) {
rtAdjustVisibility = kTessEvaluation_GrShaderFlag;
} else {
rtAdjustVisibility = kVertex_GrShaderFlag;
}
fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(
nullptr, rtAdjustVisibility, kFloat4_GrSLType, SkSL::Compiler::RTADJUST_NAME);
fFS.codeAppendf("// Stage %d, %s\n", fStageIndex, geomProc.name());
fVS.codeAppendf("// Primitive Processor %s\n", geomProc.name());
SkASSERT(!fGPImpl);
fGPImpl = geomProc.makeProgramImpl(*this->shaderCaps());
SkAutoSTArray<4, SamplerHandle> texSamplers(geomProc.numTextureSamplers());
for (int i = 0; i < geomProc.numTextureSamplers(); ++i) {
SkString name;
name.printf("TextureSampler_%d", i);
const auto& sampler = geomProc.textureSampler(i);
texSamplers[i] = this->emitSampler(geomProc.textureSampler(i).backendFormat(),
sampler.samplerState(),
sampler.swizzle(),
name.c_str());
if (!texSamplers[i].isValid()) {
return false;
}
}
GrGeometryProcessor::ProgramImpl::EmitArgs args(&fVS,
&fFS,
this->varyingHandler(),
this->uniformHandler(),
this->shaderCaps(),
geomProc,
outputColor->c_str(),
outputCoverage->c_str(),
texSamplers.get());
fFPCoordsMap = fGPImpl->emitCode(args, this->pipeline());
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(geomProc);)
return true;
}
bool GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) {
int fpCount = this->pipeline().numFragmentProcessors();
SkASSERT(fFPImpls.empty());
fFPImpls.reserve(fpCount);
for (int i = 0; i < fpCount; ++i) {
SkString* inOut = this->pipeline().isColorFragmentProcessor(i) ? color : coverage;
SkString output;
const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
fFPImpls.push_back(fp.makeProgramImpl());
output = this->emitFragProc(fp, *fFPImpls.back(), *inOut, output);
if (output.isEmpty()) {
return false;
}
*inOut = std::move(output);
}
return true;
}
SkString GrGLSLProgramBuilder::emitFragProc(const GrFragmentProcessor& fp,
GrFragmentProcessor::ProgramImpl& impl,
const SkString& input,
SkString output) {
SkASSERT(input.size());
// Program builders have a bit of state we need to clear with each effect
this->advanceStage();
this->nameExpression(&output, "output");
fFS.codeAppendf("half4 %s;", output.c_str());
bool ok = true;
fp.visitWithImpls([&, samplerIdx = 0](const GrFragmentProcessor& fp,
GrFragmentProcessor::ProgramImpl& impl) mutable {
if (auto* te = fp.asTextureEffect()) {
SkString name;
name.printf("TextureSampler_%d", samplerIdx++);
GrSamplerState samplerState = te->samplerState();
const GrBackendFormat& format = te->view().proxy()->backendFormat();
GrSwizzle swizzle = te->view().swizzle();
SamplerHandle handle = this->emitSampler(format, samplerState, swizzle, name.c_str());
if (!handle.isValid()) {
ok = false;
return;
}
static_cast<GrTextureEffect::Impl&>(impl).setSamplerHandle(handle);
}
}, impl);
if (!ok) {
return {};
}
this->writeFPFunction(fp, impl);
if (fp.isBlendFunction()) {
fFS.codeAppendf(
"%s = %s(%s, half4(1));", output.c_str(), impl.functionName(), input.c_str());
} else {
fFS.codeAppendf("%s = %s(%s);", output.c_str(), impl.functionName(), input.c_str());
}
// We have to check that effects and the code they emit are consistent, ie if an effect asks
// for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(fp);)
return output;
}
void GrGLSLProgramBuilder::writeChildFPFunctions(const GrFragmentProcessor& fp,
GrFragmentProcessor::ProgramImpl& impl) {
fSubstageIndices.push_back(0);
for (int i = 0; i < impl.numChildProcessors(); ++i) {
GrFragmentProcessor::ProgramImpl* childImpl = impl.childProcessor(i);
if (!childImpl) {
continue;
}
const GrFragmentProcessor* childFP = fp.childProcessor(i);
SkASSERT(childFP);
this->writeFPFunction(*childFP, *childImpl);
++fSubstageIndices.back();
}
fSubstageIndices.pop_back();
}
void GrGLSLProgramBuilder::writeFPFunction(const GrFragmentProcessor& fp,
GrFragmentProcessor::ProgramImpl& impl) {
constexpr const char* kDstColor = "_dst";
const char* const inputColor = fp.isBlendFunction() ? "_src" : "_input";
const char* sampleCoords = "_coords";
fFS.nextStage();
// Conceptually, an FP is always sampled at a particular coordinate. However, if it is only
// sampled by a chain of uniform matrix expressions (or legacy coord transforms), the value that
// would have been passed to _coords is lifted to the vertex shader and
// varying. In that case it uses that variable and we do not pass a second argument for _coords.
GrShaderVar params[3];
int numParams = 0;
params[numParams++] = GrShaderVar(inputColor, kHalf4_GrSLType);
if (fp.isBlendFunction()) {
// Blend functions take a dest color as input.
params[numParams++] = GrShaderVar(kDstColor, kHalf4_GrSLType);
}
if (this->fragmentProcessorHasCoordsParam(&fp)) {
params[numParams++] = GrShaderVar(sampleCoords, kFloat2_GrSLType);
} else {
// Either doesn't use coords at all or sampled through a chain of passthrough/matrix
// samples usages. In the latter case the coords are emitted in the vertex shader as a
// varying, so this only has to access it. Add a float2 _coords variable that maps to the
// associated varying and replaces the absent 2nd argument to the fp's function.
GrShaderVar varying = fFPCoordsMap[&fp].coordsVarying;
switch (varying.getType()) {
case kVoid_GrSLType:
SkASSERT(!fp.usesSampleCoordsDirectly());
break;
case kFloat2_GrSLType:
// Just point the local coords to the varying
sampleCoords = varying.getName().c_str();
break;
case kFloat3_GrSLType:
// Must perform the perspective divide in the frag shader based on the
// varying, and since we won't actually have a function parameter for local
// coords, add it as a local variable.
fFS.codeAppendf("float2 %s = %s.xy / %s.z;\n",
sampleCoords,
varying.getName().c_str(),
varying.getName().c_str());
break;
default:
SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n",
varying.getName().c_str(),
(int)varying.getType());
break;
}
}
SkASSERT(numParams <= (int)SK_ARRAY_COUNT(params));
// First, emit every child's function. This needs to happen (even for children that aren't
// sampled), so that all of the expected uniforms are registered.
this->writeChildFPFunctions(fp, impl);
GrFragmentProcessor::ProgramImpl::EmitArgs args(&fFS,
this->uniformHandler(),
this->shaderCaps(),
fp,
inputColor,
kDstColor,
sampleCoords);
impl.emitCode(args);
impl.setFunctionName(fFS.getMangledFunctionName(args.fFp.name()));
fFS.emitFunction(kHalf4_GrSLType,
impl.functionName(),
SkMakeSpan(params, numParams),
fFS.code().c_str());
fFS.deleteStage();
}
bool GrGLSLProgramBuilder::emitAndInstallDstTexture() {
fDstTextureOrigin = kTopLeft_GrSurfaceOrigin;
const GrSurfaceProxyView& dstView = this->pipeline().dstProxyView();
if (this->pipeline().usesDstTexture()) {
// Set up a sampler handle for the destination texture.
GrTextureProxy* dstTextureProxy = dstView.asTextureProxy();
SkASSERT(dstTextureProxy);
const GrSwizzle& swizzle = dstView.swizzle();
fDstTextureSamplerHandle = this->emitSampler(dstTextureProxy->backendFormat(),
GrSamplerState(), swizzle, "DstTextureSampler");
if (!fDstTextureSamplerHandle.isValid()) {
return false;
}
fDstTextureOrigin = dstView.origin();
SkASSERT(dstTextureProxy->textureType() != GrTextureType::kExternal);
// Declare a _dstColor global variable which samples from the dest-texture sampler at the
// top of the fragment shader.
const char* dstTextureCoordsName;
fUniformHandles.fDstTextureCoordsUni = this->uniformHandler()->addUniform(
/*owner=*/nullptr,
kFragment_GrShaderFlag,
kHalf4_GrSLType,
"DstTextureCoords",
&dstTextureCoordsName);
fFS.codeAppend("// Read color from copy of the destination\n");
fFS.codeAppendf("half2 _dstTexCoord = (half2(sk_FragCoord.xy) - %s.xy) * %s.zw;\n",
dstTextureCoordsName, dstTextureCoordsName);
if (fDstTextureOrigin == kBottomLeft_GrSurfaceOrigin) {
fFS.codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;\n");
}
const char* dstColor = fFS.dstColor();
SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor);
fFS.definitionAppend(dstColorDecl.c_str());
fFS.codeAppendf("%s = ", dstColor);
fFS.appendTextureLookup(fDstTextureSamplerHandle, "_dstTexCoord");
fFS.codeAppend(";\n");
} else if (this->pipeline().usesDstInputAttachment()) {
// Set up an input attachment for the destination texture.
const GrSwizzle& swizzle = dstView.swizzle();
fDstTextureSamplerHandle = this->emitInputSampler(swizzle, "DstTextureInput");
if (!fDstTextureSamplerHandle.isValid()) {
return false;
}
// Populate the _dstColor variable by loading from the input attachment at the top of the
// fragment shader.
fFS.codeAppend("// Read color from input attachment\n");
const char* dstColor = fFS.dstColor();
SkString dstColorDecl = SkStringPrintf("half4 %s;", dstColor);
fFS.definitionAppend(dstColorDecl.c_str());
fFS.codeAppendf("%s = ", dstColor);
fFS.appendInputLoad(fDstTextureSamplerHandle);
fFS.codeAppend(";\n");
}
return true;
}
bool GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn,
const SkString& coverageIn) {
// Program builders have a bit of state we need to clear with each effect
this->advanceStage();
SkASSERT(!fXPImpl);
const GrXferProcessor& xp = this->pipeline().getXferProcessor();
fXPImpl = xp.makeProgramImpl();
// Enable dual source secondary output if we have one
if (xp.hasSecondaryOutput()) {
fFS.enableSecondaryOutput();
}
if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) {
fFS.enableCustomOutput();
}
SkString openBrace;
openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
fFS.codeAppend(openBrace.c_str());
SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)");
GrXferProcessor::ProgramImpl::EmitArgs args(
&fFS,
this->uniformHandler(),
this->shaderCaps(),
xp,
finalInColor.c_str(),
coverageIn.size() ? coverageIn.c_str() : "float4(1)",
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
fDstTextureSamplerHandle,
fDstTextureOrigin,
this->pipeline().writeSwizzle());
fXPImpl->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(xp);)
fFS.codeAppend("}");
return true;
}
GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(
const GrBackendFormat& backendFormat, GrSamplerState state, const GrSwizzle& swizzle,
const char* name) {
++fNumFragmentSamplers;
return this->uniformHandler()->addSampler(backendFormat, state, swizzle, name,
this->shaderCaps());
}
GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitInputSampler(const GrSwizzle& swizzle,
const char* name) {
return this->uniformHandler()->addInputSampler(swizzle, name);
}
bool GrGLSLProgramBuilder::checkSamplerCounts() {
const GrShaderCaps& shaderCaps = *this->shaderCaps();
if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n");
return false;
}
return true;
}
#ifdef SK_DEBUG
void GrGLSLProgramBuilder::verify(const GrGeometryProcessor& geomProc) {
SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly);
}
void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(fp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
}
void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
}
#endif
SkString GrGLSLProgramBuilder::getMangleSuffix() const {
SkASSERT(fStageIndex >= 0);
SkString suffix;
suffix.printf("_S%d", fStageIndex);
for (auto c : fSubstageIndices) {
suffix.appendf("_c%d", c);
}
return suffix;
}
SkString GrGLSLProgramBuilder::nameVariable(char prefix, const char* name, bool mangle) {
SkString out;
if ('\0' == prefix) {
out = name;
} else {
out.printf("%c%s", prefix, name);
}
if (mangle) {
SkString suffix = this->getMangleSuffix();
// Names containing "__" are reserved; add "x" if needed to avoid consecutive underscores.
const char *underscoreSplitter = out.endsWith('_') ? "x" : "";
out.appendf("%s%s", underscoreSplitter, suffix.c_str());
}
return out;
}
void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) {
// Name a variable to hold stage result. If we already have a valid output name, use that as-is;
// otherwise, create a new mangled one.
if (output->isEmpty()) {
*output = this->nameVariable(/*prefix=*/'\0', baseName);
}
}
void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
this->uniformHandler()->appendUniformDecls(visibility, out);
}
void GrGLSLProgramBuilder::addRTFlipUniform(const char* name) {
SkASSERT(!fUniformHandles.fRTFlipUni.isValid());
GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
fUniformHandles.fRTFlipUni =
uniformHandler->internalAddUniformArray(nullptr,
kFragment_GrShaderFlag,
kHalf2_GrSLType,
name,
false,
0,
nullptr);
}
bool GrGLSLProgramBuilder::fragmentProcessorHasCoordsParam(const GrFragmentProcessor* fp) {
return fFPCoordsMap[fp].hasCoordsParam;
}
void GrGLSLProgramBuilder::finalizeShaders() {
this->varyingHandler()->finalize();
fVS.finalize(kVertex_GrShaderFlag);
fFS.finalize(kFragment_GrShaderFlag);
}