blob: 293faed8be94ccff59bc1880aac2500dcd676aa3 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkImage.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkGradientShader.h"
#include "include/gpu/GrDirectContext.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkConvertPixels.h"
#include "src/gpu/ganesh/GrDirectContextPriv.h"
#include "src/gpu/ganesh/GrImageInfo.h"
#include "src/gpu/ganesh/SurfaceContext.h"
#include "src/gpu/ganesh/SurfaceFillContext.h"
#include "src/gpu/ganesh/effects/GrTextureEffect.h"
#include "tests/Test.h"
#include "tests/TestUtils.h"
#include "tools/ToolUtils.h"
#include "tools/gpu/BackendSurfaceFactory.h"
#include "tools/gpu/BackendTextureImageFactory.h"
#include "tools/gpu/GrContextFactory.h"
#include "tools/gpu/ProxyUtils.h"
#include <initializer_list>
static constexpr int min_rgb_channel_bits(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return 0;
case kAlpha_8_SkColorType: return 0;
case kA16_unorm_SkColorType: return 0;
case kA16_float_SkColorType: return 0;
case kRGB_565_SkColorType: return 5;
case kARGB_4444_SkColorType: return 4;
case kR8G8_unorm_SkColorType: return 8;
case kR16G16_unorm_SkColorType: return 16;
case kR16G16_float_SkColorType: return 16;
case kRGBA_8888_SkColorType: return 8;
case kSRGBA_8888_SkColorType: return 8;
case kRGB_888x_SkColorType: return 8;
case kBGRA_8888_SkColorType: return 8;
case kRGBA_1010102_SkColorType: return 10;
case kRGB_101010x_SkColorType: return 10;
case kBGRA_1010102_SkColorType: return 10;
case kBGR_101010x_SkColorType: return 10;
case kGray_8_SkColorType: return 8; // counting gray as "rgb"
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
case kR16G16B16A16_unorm_SkColorType: return 16;
case kR8_unorm_SkColorType: return 8;
}
SkUNREACHABLE;
}
static constexpr int alpha_channel_bits(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return 0;
case kAlpha_8_SkColorType: return 8;
case kA16_unorm_SkColorType: return 16;
case kA16_float_SkColorType: return 16;
case kRGB_565_SkColorType: return 0;
case kARGB_4444_SkColorType: return 4;
case kR8G8_unorm_SkColorType: return 0;
case kR16G16_unorm_SkColorType: return 0;
case kR16G16_float_SkColorType: return 0;
case kRGBA_8888_SkColorType: return 8;
case kSRGBA_8888_SkColorType: return 8;
case kRGB_888x_SkColorType: return 0;
case kBGRA_8888_SkColorType: return 8;
case kRGBA_1010102_SkColorType: return 2;
case kRGB_101010x_SkColorType: return 0;
case kBGRA_1010102_SkColorType: return 2;
case kBGR_101010x_SkColorType: return 0;
case kGray_8_SkColorType: return 0;
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
case kR16G16B16A16_unorm_SkColorType: return 16;
case kR8_unorm_SkColorType: return 0;
}
SkUNREACHABLE;
}
std::vector<SkIRect> make_long_rect_array(int w, int h) {
return {
// entire thing
SkIRect::MakeWH(w, h),
// larger on all sides
SkIRect::MakeLTRB(-10, -10, w + 10, h + 10),
// fully contained
SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, w/4, h/4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, w + 10, h/4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, w + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(w/4, -10, 3*w/4, h/4),
// outside top right corner
SkIRect::MakeLTRB(w + 1, -10, w + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(w, -10, w + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, w/4, h + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, h + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3*h/4, w/4, h + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, h/4, w/4, 3*h/4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, h + 1, -1, h + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, h, 0, h + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3*h/4, w + 10, h + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, h, w, h + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3*w/4, 3*h/4, w + 10, h + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3*w/4, -10, w + 10, h + 10),
};
}
std::vector<SkIRect> make_short_rect_array(int w, int h) {
return {
// entire thing
SkIRect::MakeWH(w, h),
// fully contained
SkIRect::MakeLTRB(w/4, h/4, 3*w/4, 3*h/4),
// overlapping top right corner
SkIRect::MakeLTRB(3*w/4, -10, w + 10, h/4),
};
}
namespace {
struct GpuReadPixelTestRules {
// Test unpremul sources? We could omit this and detect that creating the source of the read
// failed but having it lets us skip generating reference color data.
bool fAllowUnpremulSrc = true;
// Are reads that are overlapping but not contained by the src bounds expected to succeed?
bool fUncontainedRectSucceeds = true;
};
// Makes a src populated with the pixmap. The src should get its image info (or equivalent) from
// the pixmap.
template <typename T> using GpuSrcFactory = T(SkPixmap&);
enum class Result {
kFail,
kSuccess,
kExcusedFailure,
};
// Does a read from the T into the pixmap.
template <typename T>
using GpuReadSrcFn = Result(const T&, const SkIPoint& offset, const SkPixmap&);
// Makes a dst for testing writes.
template <typename T> using GpuDstFactory = T(const SkImageInfo& ii);
// Does a write from the pixmap to the T.
template <typename T>
using GpuWriteDstFn = Result(const T&, const SkIPoint& offset, const SkPixmap&);
// To test the results of the write we do a read. This reads the entire src T. It should do a non-
// converting read (i.e. the image info of the returned pixmap matches that of the T).
template <typename T>
using GpuReadDstFn = SkAutoPixmapStorage(const T&);
} // anonymous namespace
SkPixmap make_pixmap_have_valid_alpha_type(SkPixmap pm) {
if (pm.alphaType() == kUnknown_SkAlphaType) {
return {pm.info().makeAlphaType(kUnpremul_SkAlphaType), pm.addr(), pm.rowBytes()};
}
return pm;
}
static SkAutoPixmapStorage make_ref_data(const SkImageInfo& info, bool forceOpaque) {
SkAutoPixmapStorage result;
result.alloc(info);
auto surface = SkSurface::MakeRasterDirect(make_pixmap_have_valid_alpha_type(result));
if (!surface) {
return result;
}
SkPoint pts1[] = {{0, 0}, {float(info.width()), float(info.height())}};
static constexpr SkColor kColors1[] = {SK_ColorGREEN, SK_ColorRED};
SkPaint paint;
paint.setShader(SkGradientShader::MakeLinear(pts1, kColors1, nullptr, 2, SkTileMode::kClamp));
surface->getCanvas()->drawPaint(paint);
SkPoint pts2[] = {{float(info.width()), 0}, {0, float(info.height())}};
static constexpr SkColor kColors2[] = {SK_ColorBLUE, SK_ColorBLACK};
paint.setShader(SkGradientShader::MakeLinear(pts2, kColors2, nullptr, 2, SkTileMode::kClamp));
paint.setBlendMode(SkBlendMode::kPlus);
surface->getCanvas()->drawPaint(paint);
// If not opaque add some fractional alpha.
if (info.alphaType() != kOpaque_SkAlphaType && !forceOpaque) {
static constexpr SkColor kColors3[] = {SK_ColorWHITE,
SK_ColorWHITE,
0x60FFFFFF,
SK_ColorWHITE,
SK_ColorWHITE};
static constexpr SkScalar kPos3[] = {0.f, 0.15f, 0.5f, 0.85f, 1.f};
paint.setShader(SkGradientShader::MakeRadial({info.width()/2.f, info.height()/2.f},
(info.width() + info.height())/10.f,
kColors3, kPos3, 5, SkTileMode::kMirror));
paint.setBlendMode(SkBlendMode::kDstIn);
surface->getCanvas()->drawPaint(paint);
}
return result;
};
template <typename T>
static void gpu_read_pixels_test_driver(skiatest::Reporter* reporter,
const GpuReadPixelTestRules& rules,
const std::function<GpuSrcFactory<T>>& srcFactory,
const std::function<GpuReadSrcFn<T>>& read,
SkString label) {
if (!label.isEmpty()) {
// Add space for printing.
label.append(" ");
}
// Separate this out just to give it some line width to breathe. Note 'srcPixels' should have
// the same image info as src. We will do a converting readPixels() on it to get the data
// to compare with the results of 'read'.
auto runTest = [&](const T& src,
const SkPixmap& srcPixels,
const SkImageInfo& readInfo,
SkIPoint offset) {
const bool csConversion =
!SkColorSpace::Equals(readInfo.colorSpace(), srcPixels.info().colorSpace());
const auto readCT = readInfo.colorType();
const auto readAT = readInfo.alphaType();
const auto srcCT = srcPixels.info().colorType();
const auto srcAT = srcPixels.info().alphaType();
const auto rect = SkIRect::MakeWH(readInfo.width(), readInfo.height()).makeOffset(offset);
const auto surfBounds = SkIRect::MakeWH(srcPixels.width(), srcPixels.height());
const size_t readBpp = SkColorTypeBytesPerPixel(readCT);
// Make the row bytes in the dst be loose for extra stress.
const size_t dstRB = readBpp * readInfo.width() + 10 * readBpp;
// This will make the last row tight.
const size_t dstSize = readInfo.computeByteSize(dstRB);
std::unique_ptr<char[]> dstData(new char[dstSize]);
SkPixmap dstPixels(readInfo, dstData.get(), dstRB);
// Initialize with an arbitrary value for each byte. Later we will check that only the
// correct part of the destination gets overwritten by 'read'.
static constexpr auto kInitialByte = static_cast<char>(0x1B);
std::fill_n(static_cast<char*>(dstPixels.writable_addr()),
dstPixels.computeByteSize(),
kInitialByte);
const Result result = read(src, offset, dstPixels);
if (!SkIRect::Intersects(rect, surfBounds)) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if (readCT == kUnknown_SkColorType) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if ((readAT == kUnknown_SkAlphaType) != (srcAT == kUnknown_SkAlphaType)) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if (!rules.fUncontainedRectSucceeds && !surfBounds.contains(rect)) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if (result == Result::kFail) {
// TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU.
if (SkColorTypeToGrColorType(readCT) != GrColorType::kUnknown) {
ERRORF(reporter,
"Read failed. %sSrc CT: %s, Src AT: %s Read CT: %s, Read AT: %s, "
"Rect [%d, %d, %d, %d], CS conversion: %d\n",
label.c_str(),
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion);
}
return result;
}
bool guardOk = true;
auto guardCheck = [](char x) { return x == kInitialByte; };
// Considering the rect we tried to read and the surface bounds figure out which pixels in
// both src and dst space should actually have been read and written.
SkIRect srcReadRect;
if (result == Result::kSuccess && srcReadRect.intersect(surfBounds, rect)) {
SkIRect dstWriteRect = srcReadRect.makeOffset(-rect.fLeft, -rect.fTop);
const bool lumConversion =
!(SkColorTypeChannelFlags(srcCT) & kGray_SkColorChannelFlag) &&
(SkColorTypeChannelFlags(readCT) & kGray_SkColorChannelFlag);
// A CS or luminance conversion allows a 3 value difference and otherwise a 2 value
// difference. Note that sometimes read back on GPU can be lossy even when there no
// conversion at all because GPU->CPU read may go to a lower bit depth format and then
// be promoted back to the original type. For example, GL ES cannot read to 1010102, so
// we go through 8888.
float numer = (lumConversion || csConversion) ? 3.f : 2.f;
// Allow some extra tolerance if unpremuling.
if (srcAT == kPremul_SkAlphaType && readAT == kUnpremul_SkAlphaType) {
numer += 1;
}
int rgbBits = std::min({min_rgb_channel_bits(readCT), min_rgb_channel_bits(srcCT), 8});
float tol = numer / (1 << rgbBits);
float alphaTol = 0;
if (readAT != kOpaque_SkAlphaType && srcAT != kOpaque_SkAlphaType) {
// Alpha can also get squashed down to 8 bits going through an intermediate
// color format.
const int alphaBits = std::min({alpha_channel_bits(readCT),
alpha_channel_bits(srcCT),
8});
alphaTol = 2.f / (1 << alphaBits);
}
const float tols[4] = {tol, tol, tol, alphaTol};
auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y,
const float diffs[4]) {
SkASSERT(x >= 0 && y >= 0);
ERRORF(reporter,
"%sSrc CT: %s, Src AT: %s, Read CT: %s, Read AT: %s, Rect [%d, %d, %d, %d]"
", CS conversion: %d\n"
"Error at %d, %d. Diff in floats: (%f, %f, %f, %f)",
label.c_str(),
ToolUtils::colortype_name(srcCT), ToolUtils::alphatype_name(srcAT),
ToolUtils::colortype_name(readCT), ToolUtils::alphatype_name(readAT),
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion, x, y,
diffs[0], diffs[1], diffs[2], diffs[3]);
});
SkAutoPixmapStorage ref;
SkImageInfo refInfo = readInfo.makeDimensions(dstWriteRect.size());
ref.alloc(refInfo);
if (readAT == kUnknown_SkAlphaType) {
// Do a spoofed read where src and dst alpha type are both kUnpremul. This will
// allow SkPixmap readPixels to succeed and won't do any alpha type conversion.
SkPixmap unpremulRef(refInfo.makeAlphaType(kUnpremul_SkAlphaType),
ref.addr(),
ref.rowBytes());
SkPixmap unpremulSRc(srcPixels.info().makeAlphaType(kUnpremul_SkAlphaType),
srcPixels.addr(),
srcPixels.rowBytes());
unpremulSRc.readPixels(unpremulRef, srcReadRect.x(), srcReadRect.y());
} else {
srcPixels.readPixels(ref, srcReadRect.x(), srcReadRect.y());
}
// This is the part of dstPixels that should have been updated.
SkPixmap actual;
SkAssertResult(dstPixels.extractSubset(&actual, dstWriteRect));
ComparePixels(ref, actual, tols, error);
const auto* v = dstData.get();
const auto* end = dstData.get() + dstSize;
guardOk = std::all_of(v, v + dstWriteRect.top() * dstPixels.rowBytes(), guardCheck);
v += dstWriteRect.top() * dstPixels.rowBytes();
for (int y = dstWriteRect.top(); y < dstWriteRect.bottom(); ++y) {
guardOk |= std::all_of(v, v + dstWriteRect.left() * readBpp, guardCheck);
auto pad = v + dstWriteRect.right() * readBpp;
auto rowEnd = std::min(end, v + dstPixels.rowBytes());
// min protects against reading past the end of the tight last row.
guardOk |= std::all_of(pad, rowEnd, guardCheck);
v = rowEnd;
}
guardOk |= std::all_of(v, end, guardCheck);
} else {
guardOk = std::all_of(dstData.get(), dstData.get() + dstSize, guardCheck);
}
if (!guardOk) {
ERRORF(reporter,
"Result pixels modified result outside read rect [%d, %d, %d, %d]. "
"%sSrc CT: %s, Read CT: %s, CS conversion: %d",
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, label.c_str(),
ToolUtils::colortype_name(srcCT), ToolUtils::colortype_name(readCT),
csConversion);
}
return result;
};
static constexpr int kW = 16;
static constexpr int kH = 16;
const std::vector<SkIRect> longRectArray = make_long_rect_array(kW, kH);
const std::vector<SkIRect> shortRectArray = make_short_rect_array(kW, kH);
// We ensure we use the long array once per src and read color type and otherwise use the
// short array to improve test run time.
// Also, some color types have no alpha values and thus Opaque Premul and Unpremul are
// equivalent. Just ensure each redundant AT is tested once with each CT (src and read).
// Similarly, alpha-only color types behave the same for all alpha types so just test premul
// after one iter.
// We consider a src or read CT thoroughly tested once it has run through the long rect array
// and full complement of alpha types with one successful read in the loop.
std::array<bool, kLastEnum_SkColorType + 1> srcCTTestedThoroughly = {},
readCTTestedThoroughly = {};
for (int sat = 0; sat < kLastEnum_SkAlphaType; ++sat) {
const auto srcAT = static_cast<SkAlphaType>(sat);
if (srcAT == kUnpremul_SkAlphaType && !rules.fAllowUnpremulSrc) {
continue;
}
for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) {
const auto srcCT = static_cast<SkColorType>(sct);
// We always make our ref data as F32
auto refInfo = SkImageInfo::Make(kW, kH,
kRGBA_F32_SkColorType,
srcAT,
SkColorSpace::MakeSRGB());
// 1010102 formats have an issue where it's easy to make a resulting
// color where r, g, or b is greater than a. CPU/GPU differ in whether the stored color
// channels are clipped to the alpha value. CPU clips but GPU does not.
// Note that we only currently use srcCT for the 1010102 workaround. If we remove this
// we can also put the ref data setup above the srcCT loop.
bool forceOpaque = srcAT == kPremul_SkAlphaType &&
(srcCT == kRGBA_1010102_SkColorType || srcCT == kBGRA_1010102_SkColorType);
SkAutoPixmapStorage srcPixels = make_ref_data(refInfo, forceOpaque);
auto src = srcFactory(srcPixels);
if (!src) {
continue;
}
if (SkColorTypeIsAlwaysOpaque(srcCT) && srcCTTestedThoroughly[srcCT] &&
(kPremul_SkAlphaType == srcAT || kUnpremul_SkAlphaType == srcAT)) {
continue;
}
if (SkColorTypeIsAlphaOnly(srcCT) && srcCTTestedThoroughly[srcCT] &&
(kUnpremul_SkAlphaType == srcAT ||
kOpaque_SkAlphaType == srcAT ||
kUnknown_SkAlphaType == srcAT)) {
continue;
}
for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) {
const auto readCT = static_cast<SkColorType>(rct);
for (const sk_sp<SkColorSpace>& readCS :
{SkColorSpace::MakeSRGB(), SkColorSpace::MakeSRGBLinear()}) {
for (int at = 0; at <= kLastEnum_SkAlphaType; ++at) {
const auto readAT = static_cast<SkAlphaType>(at);
if (srcAT != kOpaque_SkAlphaType && readAT == kOpaque_SkAlphaType) {
// This doesn't make sense.
continue;
}
if (SkColorTypeIsAlwaysOpaque(readCT) && readCTTestedThoroughly[readCT] &&
(kPremul_SkAlphaType == readAT || kUnpremul_SkAlphaType == readAT)) {
continue;
}
if (SkColorTypeIsAlphaOnly(readCT) && readCTTestedThoroughly[readCT] &&
(kUnpremul_SkAlphaType == readAT ||
kOpaque_SkAlphaType == readAT ||
kUnknown_SkAlphaType == readAT)) {
continue;
}
const auto& rects =
srcCTTestedThoroughly[sct] && readCTTestedThoroughly[rct]
? shortRectArray
: longRectArray;
for (const auto& rect : rects) {
const auto readInfo = SkImageInfo::Make(rect.width(), rect.height(),
readCT, readAT, readCS);
const SkIPoint offset = rect.topLeft();
Result r = runTest(src, srcPixels, readInfo, offset);
if (r == Result::kSuccess) {
srcCTTestedThoroughly[sct] = true;
readCTTestedThoroughly[rct] = true;
}
}
}
}
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextReadPixels,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
using Surface = std::unique_ptr<skgpu::SurfaceContext>;
GrDirectContext* direct = ctxInfo.directContext();
auto reader = std::function<GpuReadSrcFn<Surface>>(
[direct](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) {
if (surface->readPixels(direct, pixels, offset)) {
return Result::kSuccess;
} else {
// Reading from a non-renderable format is not guaranteed to work on GL.
// We'd have to be able to force a copy or draw draw to a renderable format.
const auto& caps = *direct->priv().caps();
if (direct->backend() == GrBackendApi::kOpenGL &&
!caps.isFormatRenderable(surface->asSurfaceProxy()->backendFormat(), 1)) {
return Result::kExcusedFailure;
}
return Result::kFail;
}
});
GpuReadPixelTestRules rules;
rules.fAllowUnpremulSrc = true;
rules.fUncontainedRectSucceeds = true;
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
auto factory = std::function<GpuSrcFactory<Surface>>(
[direct, origin, renderable](const SkPixmap& src) {
auto sc = CreateSurfaceContext(
direct, src.info(), SkBackingFit::kExact, origin, renderable);
if (sc) {
sc->writePixels(direct, src, {0, 0});
}
return sc;
});
auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin);
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
}
}
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ReadPixels_InvalidRowBytes_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
auto srcII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, srcII);
for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) {
auto colorType = static_cast<SkColorType>(ct);
size_t bpp = SkColorTypeBytesPerPixel(colorType);
if (bpp <= 1) {
continue;
}
auto dstII = srcII.makeColorType(colorType);
size_t badRowBytes = (surf->width() + 1)*bpp - 1;
auto storage = std::make_unique<char[]>(badRowBytes*surf->height());
REPORTER_ASSERT(reporter, !surf->readPixels(dstII, storage.get(), badRowBytes, 0, 0));
}
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(WritePixels_InvalidRowBytes_Gpu,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
auto dstII = SkImageInfo::Make({10, 10}, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
auto surf = SkSurface::MakeRenderTarget(ctxInfo.directContext(), SkBudgeted::kYes, dstII);
for (int ct = 0; ct < kLastEnum_SkColorType + 1; ++ct) {
auto colorType = static_cast<SkColorType>(ct);
size_t bpp = SkColorTypeBytesPerPixel(colorType);
if (bpp <= 1) {
continue;
}
auto srcII = dstII.makeColorType(colorType);
size_t badRowBytes = (surf->width() + 1)*bpp - 1;
auto storage = std::make_unique<char[]>(badRowBytes*surf->height());
memset(storage.get(), 0, badRowBytes * surf->height());
// SkSurface::writePixels doesn't report bool, SkCanvas's does.
REPORTER_ASSERT(reporter,
!surf->getCanvas()->writePixels(srcII, storage.get(), badRowBytes, 0, 0));
}
}
namespace {
struct AsyncContext {
bool fCalled = false;
std::unique_ptr<const SkImage::AsyncReadResult> fResult;
};
} // anonymous namespace
// Making this a lambda in the test functions caused:
// "error: cannot compile this forwarded non-trivially copyable parameter yet"
// on x86/Win/Clang bot, referring to 'result'.
static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) {
auto context = static_cast<AsyncContext*>(c);
context->fResult = std::move(result);
context->fCalled = true;
};
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceAsyncReadPixels,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
using Surface = sk_sp<SkSurface>;
auto reader = std::function<GpuReadSrcFn<Surface>>(
[](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) {
auto direct = surface->recordingContext()->asDirectContext();
SkASSERT(direct);
AsyncContext context;
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
// Rescale quality and linearity don't matter since we're doing a non-scaling
// readback.
surface->asyncRescaleAndReadPixels(pixels.info(), rect,
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest,
async_callback, &context);
direct->submit();
while (!context.fCalled) {
direct->checkAsyncWorkCompletion();
}
if (!context.fResult) {
return Result::kFail;
}
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), context.fResult->data(0),
context.fResult->rowBytes(0), pixels.info().minRowBytes(),
pixels.height());
return Result::kSuccess;
});
GpuReadPixelTestRules rules;
rules.fAllowUnpremulSrc = false;
rules.fUncontainedRectSucceeds = false;
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
auto factory = std::function<GpuSrcFactory<Surface>>(
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
auto surf = SkSurface::MakeRenderTarget(context,
SkBudgeted::kYes,
src.info(),
1,
origin,
nullptr);
if (surf) {
surf->writePixels(src, 0, 0);
}
return surf;
});
auto label = SkStringPrintf("Origin: %d", origin);
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
auto backendRTFactory = std::function<GpuSrcFactory<Surface>>(
[context = ctxInfo.directContext(), origin](const SkPixmap& src) {
// Dawn backend implementation of backend render targets doesn't support
// reading.
if (context->backend() == GrBackendApi::kDawn) {
return Surface();
}
auto surf = sk_gpu_test::MakeBackendRenderTargetSurface(context,
src.info(),
origin,
1);
if (surf) {
surf->writePixels(src, 0, 0);
}
return surf;
});
label = SkStringPrintf("BERT Origin: %d", origin);
gpu_read_pixels_test_driver(reporter, rules, backendRTFactory, reader, label);
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageAsyncReadPixels,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
using Image = sk_sp<SkImage>;
auto context = ctxInfo.directContext();
auto reader = std::function<GpuReadSrcFn<Image>>([context](const Image& image,
const SkIPoint& offset,
const SkPixmap& pixels) {
AsyncContext asyncContext;
auto rect = SkIRect::MakeSize(pixels.dimensions()).makeOffset(offset);
// The GPU implementation is based on rendering and will fail for non-renderable color
// types.
auto ct = SkColorTypeToGrColorType(image->colorType());
auto format = context->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes);
if (!context->priv().caps()->isFormatAsColorTypeRenderable(ct, format)) {
return Result::kExcusedFailure;
}
// Rescale quality and linearity don't matter since we're doing a non-scaling readback.
image->asyncRescaleAndReadPixels(pixels.info(), rect,
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest,
async_callback, &asyncContext);
context->submit();
while (!asyncContext.fCalled) {
context->checkAsyncWorkCompletion();
}
if (!asyncContext.fResult) {
return Result::kFail;
}
SkRectMemcpy(pixels.writable_addr(), pixels.rowBytes(), asyncContext.fResult->data(0),
asyncContext.fResult->rowBytes(0), pixels.info().minRowBytes(),
pixels.height());
return Result::kSuccess;
});
GpuReadPixelTestRules rules;
rules.fAllowUnpremulSrc = true;
rules.fUncontainedRectSucceeds = false;
for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
auto factory = std::function<GpuSrcFactory<Image>>([&](const SkPixmap& src) {
return sk_gpu_test::MakeBackendTextureImage(ctxInfo.directContext(), src,
renderable, origin);
});
auto label = SkStringPrintf("Renderable: %d, Origin: %d", (int)renderable, origin);
gpu_read_pixels_test_driver(reporter, rules, factory, reader, label);
}
}
}
DEF_GPUTEST(AsyncReadPixelsContextShutdown, reporter, options, CtsEnforcement::kApiLevel_T) {
const auto ii = SkImageInfo::Make(10, 10, kRGBA_8888_SkColorType, kPremul_SkAlphaType,
SkColorSpace::MakeSRGB());
enum class ShutdownSequence {
kFreeResult_DestroyContext,
kDestroyContext_FreeResult,
kFreeResult_ReleaseAndAbandon_DestroyContext,
kFreeResult_Abandon_DestroyContext,
kReleaseAndAbandon_FreeResult_DestroyContext,
kAbandon_FreeResult_DestroyContext,
kReleaseAndAbandon_DestroyContext_FreeResult,
kAbandon_DestroyContext_FreeResult,
};
for (int t = 0; t < sk_gpu_test::GrContextFactory::kContextTypeCnt; ++t) {
auto type = static_cast<sk_gpu_test::GrContextFactory::ContextType>(t);
for (auto sequence : {ShutdownSequence::kFreeResult_DestroyContext,
ShutdownSequence::kDestroyContext_FreeResult,
ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext,
ShutdownSequence::kFreeResult_Abandon_DestroyContext,
ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext,
ShutdownSequence::kAbandon_FreeResult_DestroyContext,
ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult,
ShutdownSequence::kAbandon_DestroyContext_FreeResult}) {
// Vulkan and D3D context abandoning without resource release has issues outside of the
// scope of this test.
if ((type == sk_gpu_test::GrContextFactory::kVulkan_ContextType ||
type == sk_gpu_test::GrContextFactory::kDirect3D_ContextType) &&
(sequence == ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext ||
sequence == ShutdownSequence::kFreeResult_Abandon_DestroyContext ||
sequence == ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext ||
sequence == ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult ||
sequence == ShutdownSequence::kAbandon_FreeResult_DestroyContext ||
sequence == ShutdownSequence::kAbandon_DestroyContext_FreeResult)) {
continue;
}
for (bool yuv : {false, true}) {
sk_gpu_test::GrContextFactory factory(options);
auto direct = factory.get(type);
if (!direct) {
continue;
}
// This test is only meaningful for contexts that support transfer buffers for
// reads.
if (!direct->priv().caps()->transferFromSurfaceToBufferSupport()) {
continue;
}
auto surf = SkSurface::MakeRenderTarget(direct, SkBudgeted::kYes, ii, 1, nullptr);
if (!surf) {
continue;
}
AsyncContext cbContext;
if (yuv) {
surf->asyncRescaleAndReadPixelsYUV420(
kIdentity_SkYUVColorSpace, SkColorSpace::MakeSRGB(), ii.bounds(),
ii.dimensions(), SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest, &async_callback, &cbContext);
} else {
surf->asyncRescaleAndReadPixels(ii, ii.bounds(), SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest, &async_callback,
&cbContext);
}
direct->submit();
while (!cbContext.fCalled) {
direct->checkAsyncWorkCompletion();
}
if (!cbContext.fResult) {
ERRORF(reporter, "Callback failed on %s. is YUV: %d",
sk_gpu_test::GrContextFactory::ContextTypeName(type), yuv);
continue;
}
// For vulkan we need to release all refs to the GrDirectContext before trying to
// destroy the test context. The surface here is holding a ref.
surf.reset();
// The real test is that we don't crash, get Vulkan validation errors, etc, during
// this shutdown sequence.
switch (sequence) {
case ShutdownSequence::kFreeResult_DestroyContext:
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
break;
case ShutdownSequence::kDestroyContext_FreeResult:
factory.destroyContexts();
break;
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
factory.releaseResourcesAndAbandonContexts();
break;
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
factory.abandonContexts();
break;
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
factory.releaseResourcesAndAbandonContexts();
factory.destroyContexts();
break;
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
factory.abandonContexts();
factory.destroyContexts();
break;
}
cbContext.fResult.reset();
switch (sequence) {
case ShutdownSequence::kFreeResult_ReleaseAndAbandon_DestroyContext:
factory.releaseResourcesAndAbandonContexts();
break;
case ShutdownSequence::kFreeResult_Abandon_DestroyContext:
factory.abandonContexts();
break;
case ShutdownSequence::kFreeResult_DestroyContext:
case ShutdownSequence::kDestroyContext_FreeResult:
case ShutdownSequence::kReleaseAndAbandon_FreeResult_DestroyContext:
case ShutdownSequence::kAbandon_FreeResult_DestroyContext:
case ShutdownSequence::kReleaseAndAbandon_DestroyContext_FreeResult:
case ShutdownSequence::kAbandon_DestroyContext_FreeResult:
break;
}
}
}
}
}
template <typename T>
static void gpu_write_pixels_test_driver(skiatest::Reporter* reporter,
const std::function<GpuDstFactory<T>>& dstFactory,
const std::function<GpuWriteDstFn<T>>& write,
const std::function<GpuReadDstFn<T>>& read) {
// Separate this out just to give it some line width to breathe.
auto runTest = [&](const T& dst,
const SkImageInfo& dstInfo,
const SkPixmap& srcPixels,
SkIPoint offset) {
const bool csConversion =
!SkColorSpace::Equals(dstInfo.colorSpace(), srcPixels.info().colorSpace());
const auto writeCT = srcPixels.colorType();
const auto writeAT = srcPixels.alphaType();
const auto dstCT = dstInfo.colorType();
const auto dstAT = dstInfo.alphaType();
const auto rect = SkIRect::MakePtSize(offset, srcPixels.dimensions());
const auto surfBounds = SkIRect::MakeSize(dstInfo.dimensions());
// Do an initial read before the write.
SkAutoPixmapStorage firstReadPM = read(dst);
if (!firstReadPM.addr()) {
// Particularly with GLES 2 we can have formats that are unreadable with our current
// implementation of read pixels. If the format can't be attached to a FBO we don't have
// a code path that draws it to another readable color type/format combo and reads from
// that.
return Result::kExcusedFailure;
}
const Result result = write(dst, offset, srcPixels);
if (!SkIRect::Intersects(rect, surfBounds)) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if (writeCT == kUnknown_SkColorType) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if ((writeAT == kUnknown_SkAlphaType) != (dstAT == kUnknown_SkAlphaType)) {
REPORTER_ASSERT(reporter, result != Result::kSuccess);
} else if (result == Result::kExcusedFailure) {
return result;
} else if (result == Result::kFail) {
// TODO: Support RGB/BGR 101010x, BGRA 1010102 on the GPU.
if (SkColorTypeToGrColorType(writeCT) != GrColorType::kUnknown) {
ERRORF(reporter,
"Write failed. Write CT: %s, Write AT: %s Dst CT: %s, Dst AT: %s, "
"Rect [%d, %d, %d, %d], CS conversion: %d\n",
ToolUtils::colortype_name(writeCT), ToolUtils::alphatype_name(writeAT),
ToolUtils::colortype_name(dstCT), ToolUtils::alphatype_name(dstAT),
rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, csConversion);
}
return result;
}
SkIRect checkRect;
if (result != Result::kSuccess || !checkRect.intersect(surfBounds, rect)) {
return result;
}
// Do an initial read before the write. We'll use this to verify that areas outside the
// write are unaffected.
SkAutoPixmapStorage secondReadPM = read(dst);
if (!secondReadPM.addr()) {
// The first read succeeded so this one should, too.
ERRORF(reporter,
"could not read from dst (CT: %s, AT: %s)\n",
ToolUtils::colortype_name(dstCT),
ToolUtils::alphatype_name(dstAT));
return Result::kFail;
}
// Sometimes wider types go through 8bit unorm intermediates because of API
// restrictions.
int rgbBits = std::min({min_rgb_channel_bits(writeCT), min_rgb_channel_bits(dstCT), 8});
float tol = 2.f/(1 << rgbBits);
float alphaTol = 0;
if (writeAT != kOpaque_SkAlphaType && dstAT != kOpaque_SkAlphaType) {
// Alpha can also get squashed down to 8 bits going through an intermediate
// color format.
const int alphaBits = std::min({alpha_channel_bits(writeCT),
alpha_channel_bits(dstCT),
8});
alphaTol = 2.f/(1 << alphaBits);
}
const float tols[4] = {tol, tol, tol, alphaTol};
auto error = std::function<ComparePixmapsErrorReporter>([&](int x,
int y,
const float diffs[4]) {
SkASSERT(x >= 0 && y >= 0);
ERRORF(reporter,
"Write CT: %s, Write AT: %s, Dst CT: %s, Dst AT: %s, Rect [%d, %d, %d, %d]"
", CS conversion: %d\n"
"Error at %d, %d. Diff in floats: (%f, %f, %f, %f)",
ToolUtils::colortype_name(writeCT),
ToolUtils::alphatype_name(writeAT),
ToolUtils::colortype_name(dstCT),
ToolUtils::alphatype_name(dstAT),
rect.fLeft,
rect.fTop,
rect.fRight,
rect.fBottom,
csConversion,
x,
y,
diffs[0],
diffs[1],
diffs[2],
diffs[3]);
});
SkAutoPixmapStorage ref;
ref.alloc(secondReadPM.info().makeDimensions(checkRect.size()));
// Here we use the CPU backend to do the equivalent conversion as the write we're
// testing, using kUnpremul instead of kUnknown since CPU requires a valid alpha type.
SkAssertResult(make_pixmap_have_valid_alpha_type(srcPixels).readPixels(
make_pixmap_have_valid_alpha_type(ref),
std::max(0, -offset.fX),
std::max(0, -offset.fY)));
// This is the part of secondReadPixels that should have been updated by the write.
SkPixmap actual;
SkAssertResult(secondReadPM.extractSubset(&actual, checkRect));
ComparePixels(ref, actual, tols, error);
// The area around written rect should be the same in the first and second read.
SkIRect borders[]{
{ 0, 0, secondReadPM.width(), secondReadPM.height()},
{checkRect.fRight, 0, checkRect.fLeft, secondReadPM.height()},
{ checkRect.fLeft, 0, checkRect.fRight, checkRect.fTop},
{ checkRect.fLeft, checkRect.fBottom, checkRect.fRight, secondReadPM.height()}
};
for (const auto r : borders) {
if (!r.isEmpty()) {
// Make a copy because MSVC for some reason doesn't correctly capture 'r'.
SkIPoint tl = r.topLeft();
auto guardError = std::function<ComparePixmapsErrorReporter>(
[&](int x, int y, const float diffs[4]) {
x += tl.x();
y += tl.y();
ERRORF(reporter,
"Write CT: %s, Write AT: %s, Dst CT: %s, Dst AT: %s,"
"Rect [%d, %d, %d, %d], CS conversion: %d\n"
"Error in guard region %d, %d. Diff in floats: (%f, %f, %f, %f)",
ToolUtils::colortype_name(writeCT),
ToolUtils::alphatype_name(writeAT),
ToolUtils::colortype_name(dstCT),
ToolUtils::alphatype_name(dstAT),
rect.fLeft,
rect.fTop,
rect.fRight,
rect.fBottom,
csConversion,
x,
y,
diffs[0],
diffs[1],
diffs[2],
diffs[3]);
});
SkPixmap a, b;
SkAssertResult(firstReadPM.extractSubset(&a, r));
SkAssertResult(firstReadPM.extractSubset(&b, r));
float zeroTols[4] = {};
ComparePixels(a, b, zeroTols, guardError);
}
}
return result;
};
static constexpr int kW = 16;
static constexpr int kH = 16;
const std::vector<SkIRect> longRectArray = make_long_rect_array(kW, kH);
const std::vector<SkIRect> shortRectArray = make_short_rect_array(kW, kH);
// We ensure we use the long array once per src and read color type and otherwise use the
// short array to improve test run time.
// Also, some color types have no alpha values and thus Opaque Premul and Unpremul are
// equivalent. Just ensure each redundant AT is tested once with each CT (dst and write).
// Similarly, alpha-only color types behave the same for all alpha types so just test premul
// after one iter.
// We consider a dst or write CT thoroughly tested once it has run through the long rect array
// and full complement of alpha types with one successful read in the loop.
std::array<bool, kLastEnum_SkColorType + 1> dstCTTestedThoroughly = {},
writeCTTestedThoroughly = {};
for (int dat = 0; dat < kLastEnum_SkAlphaType; ++dat) {
const auto dstAT = static_cast<SkAlphaType>(dat);
for (int dct = 0; dct <= kLastEnum_SkColorType; ++dct) {
const auto dstCT = static_cast<SkColorType>(dct);
const auto dstInfo = SkImageInfo::Make(kW, kH, dstCT, dstAT, SkColorSpace::MakeSRGB());
auto dst = dstFactory(dstInfo);
if (!dst) {
continue;
}
if (SkColorTypeIsAlwaysOpaque(dstCT) && dstCTTestedThoroughly[dstCT] &&
(kPremul_SkAlphaType == dstAT || kUnpremul_SkAlphaType == dstAT)) {
continue;
}
if (SkColorTypeIsAlphaOnly(dstCT) && dstCTTestedThoroughly[dstCT] &&
(kUnpremul_SkAlphaType == dstAT ||
kOpaque_SkAlphaType == dstAT ||
kUnknown_SkAlphaType == dstAT)) {
continue;
}
for (int wct = 0; wct <= kLastEnum_SkColorType; ++wct) {
const auto writeCT = static_cast<SkColorType>(wct);
for (const sk_sp<SkColorSpace>& writeCS : {SkColorSpace::MakeSRGB(),
SkColorSpace::MakeSRGBLinear()}) {
for (int wat = 0; wat <= kLastEnum_SkAlphaType; ++wat) {
const auto writeAT = static_cast<SkAlphaType>(wat);
if (writeAT != kOpaque_SkAlphaType && dstAT == kOpaque_SkAlphaType) {
// This doesn't make sense.
continue;
}
if (SkColorTypeIsAlwaysOpaque(writeCT) &&
writeCTTestedThoroughly[writeCT] &&
(kPremul_SkAlphaType == writeAT || kUnpremul_SkAlphaType == writeAT)) {
continue;
}
if (SkColorTypeIsAlphaOnly(writeCT) && writeCTTestedThoroughly[writeCT] &&
(kUnpremul_SkAlphaType == writeAT ||
kOpaque_SkAlphaType == writeAT ||
kUnknown_SkAlphaType == writeAT)) {
continue;
}
const auto& rects =
dstCTTestedThoroughly[dct] && writeCTTestedThoroughly[wct]
? shortRectArray
: longRectArray;
for (const auto& rect : rects) {
auto writeInfo = SkImageInfo::Make(rect.size(),
writeCT,
writeAT,
writeCS);
// CPU and GPU handle 1010102 differently. CPU clamps RGB to A, GPU
// doesn't.
bool forceOpaque = writeCT == kRGBA_1010102_SkColorType ||
writeCT == kBGRA_1010102_SkColorType;
SkAutoPixmapStorage writePixels = make_ref_data(writeInfo, forceOpaque);
const SkIPoint offset = rect.topLeft();
Result r = runTest(dst, dstInfo, writePixels, offset);
if (r == Result::kSuccess) {
dstCTTestedThoroughly[dct] = true;
writeCTTestedThoroughly[wct] = true;
}
}
}
}
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextWritePixels,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
using Surface = std::unique_ptr<skgpu::SurfaceContext>;
GrDirectContext* direct = ctxInfo.directContext();
auto writer = std::function<GpuWriteDstFn<Surface>>(
[direct](const Surface& surface, const SkIPoint& offset, const SkPixmap& pixels) {
if (surface->writePixels(direct, pixels, offset)) {
return Result::kSuccess;
} else {
return Result::kFail;
}
});
auto reader = std::function<GpuReadDstFn<Surface>>([direct](const Surface& s) {
SkAutoPixmapStorage result;
auto grInfo = s->imageInfo();
SkColorType ct = GrColorTypeToSkColorType(grInfo.colorType());
SkASSERT(ct != kUnknown_SkColorType);
auto skInfo = SkImageInfo::Make(grInfo.dimensions(), ct, grInfo.alphaType(),
grInfo.refColorSpace());
result.alloc(skInfo);
if (!s->readPixels(direct, result, {0, 0})) {
SkAutoPixmapStorage badResult;
return badResult;
}
return result;
});
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
auto factory = std::function<GpuDstFactory<Surface>>(
[direct, origin, renderable](const SkImageInfo& info) {
return CreateSurfaceContext(direct,
info,
SkBackingFit::kExact,
origin,
renderable);
});
gpu_write_pixels_test_driver(reporter, factory, writer, reader);
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SurfaceContextWritePixelsMipped,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
auto direct = ctxInfo.directContext();
if (!direct->priv().caps()->mipmapSupport()) {
return;
}
static constexpr int kW = 25,
kH = 37;
SkAutoPixmapStorage refP = make_ref_data(SkImageInfo::Make({kW, kH},
kRGBA_F32_SkColorType,
kPremul_SkAlphaType,
nullptr),
false);
SkAutoPixmapStorage refO = make_ref_data(SkImageInfo::Make({kW, kH},
kRGBA_F32_SkColorType,
kOpaque_SkAlphaType,
nullptr),
true);
for (int c = 0; c < kGrColorTypeCnt; ++c) {
auto ct = static_cast<GrColorType>(c);
// Below we use rendering to read the level pixels back.
auto format = direct->priv().caps()->getDefaultBackendFormat(ct, GrRenderable::kYes);
if (!format.isValid()) {
continue;
}
SkAlphaType at = GrColorTypeHasAlpha(ct) ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
GrImageInfo info(ct, at, nullptr, kW, kH);
SkTArray<GrCPixmap> levels;
const auto& ref = at == kPremul_SkAlphaType ? refP : refO;
for (int w = kW, h = kH; w || h; w/=2, h/=2) {
auto level = GrPixmap::Allocate(info.makeWH(std::max(w, 1), std::max(h, 1)));
SkPixmap src;
SkAssertResult(ref.extractSubset(&src, SkIRect::MakeSize(level.dimensions())));
SkAssertResult(GrConvertPixels(level, src));
levels.push_back(level);
}
for (bool unowned : {false, true}) { // test a GrCPixmap that doesn't own its storage.
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
for (GrSurfaceOrigin origin : {kTopLeft_GrSurfaceOrigin,
kBottomLeft_GrSurfaceOrigin}) {
auto sc = CreateSurfaceContext(direct,
info,
SkBackingFit::kExact,
origin,
renderable,
/*sample count*/ 1,
GrMipmapped::kYes);
if (!sc) {
continue;
}
// Keeps pixels in unowned case alive until after writePixels is called but no
// longer.
GrPixmap keepAlive;
GrCPixmap savedLevel = levels[1];
if (unowned) {
// Also test non-tight row bytes with the unowned pixmap, bump width by 1.
int w = levels[1].width() + 1;
int h = levels[1].height();
keepAlive = GrPixmap::Allocate(levels[1].info().makeWH(w, h));
SkPixmap src;
// These pixel values will be the same as the original level 1.
SkAssertResult(ref.extractSubset(&src, SkIRect::MakeWH(w, h)));
SkAssertResult(GrConvertPixels(keepAlive, src));
levels[1] = GrCPixmap(levels[1].info(),
keepAlive.addr(),
keepAlive.rowBytes());
}
// Going through intermediate textures is not supported for MIP levels (because
// we don't support rendering to non-base levels). So it's hard to have any hard
// rules about when we expect success.
if (!sc->writePixels(direct, levels.begin(), levels.count())) {
continue;
}
// Make sure the pixels from the unowned pixmap are released and then put the
// original level back in for the comparison after the read below.
keepAlive = {};
levels[1] = savedLevel;
// TODO: Update this when read pixels supports reading back levels to read
// directly rather than using minimizing draws.
auto dstSC = CreateSurfaceContext(direct,
info,
SkBackingFit::kExact,
kBottomLeft_GrSurfaceOrigin,
GrRenderable::kYes);
SkASSERT(dstSC);
GrSamplerState sampler(SkFilterMode::kNearest, SkMipmapMode::kNearest);
for (int i = 1; i <= 1; ++i) {
auto te = GrTextureEffect::Make(sc->readSurfaceView(),
info.alphaType(),
SkMatrix::I(),
sampler,
*direct->priv().caps());
dstSC->asFillContext()->fillRectToRectWithFP(
SkIRect::MakeSize(sc->dimensions()),
SkIRect::MakeSize(levels[i].dimensions()),
std::move(te));
GrImageInfo readInfo =
dstSC->imageInfo().makeDimensions(levels[i].dimensions());
GrPixmap read = GrPixmap::Allocate(readInfo);
if (!dstSC->readPixels(direct, read, {0, 0})) {
continue;
}
auto skCT = GrColorTypeToSkColorType(info.colorType());
int rgbBits = std::min(min_rgb_channel_bits(skCT), 8);
float rgbTol = (rgbBits == 0) ? 1.f : 2.f / ((1 << rgbBits) - 1);
int alphaBits = std::min(alpha_channel_bits(skCT), 8);
float alphaTol = (alphaBits == 0) ? 1.f : 2.f / ((1 << alphaBits) - 1);
float tol[] = {rgbTol, rgbTol, rgbTol, alphaTol};
GrCPixmap a = levels[i];
GrCPixmap b = read;
// The compare code will linearize when reading the srgb data. This will
// magnify differences at the high end. Rather than adjusting the tolerance
// to compensate we do the comparison without going through srgb->linear.
if (ct == GrColorType::kRGBA_8888_SRGB) {
a = GrCPixmap(a.info().makeColorType(GrColorType::kRGBA_8888),
a.addr(),
a.rowBytes());
b = GrCPixmap(b.info().makeColorType(GrColorType::kRGBA_8888),
b.addr(),
b.rowBytes());
}
auto error = std::function<ComparePixmapsErrorReporter>(
[&](int x, int y, const float diffs[4]) {
SkASSERT(x >= 0 && y >= 0);
ERRORF(reporter,
"CT: %s, Level %d, Unowned: %d. "
"Error at %d, %d. Diff in floats:"
"(%f, %f, %f, %f)",
GrColorTypeToStr(info.colorType()), i, unowned, x, y,
diffs[0], diffs[1], diffs[2], diffs[3]);
});
ComparePixels(a, b, tol, error);
}
}
}
}
}
}
// Tests a bug found in OOP-R canvas2d in Chrome. The GPU backend would incorrectly not bind
// buffer 0 to GL_PIXEL_PACK_BUFFER before a glReadPixels() that was supposed to read into
// client memory if a GrDirectContext::resetContext() occurred.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(GLReadPixelsUnbindPBO,
reporter,
ctxInfo,
CtsEnforcement::kApiLevel_T) {
// Start with a async read so that we bind to GL_PIXEL_PACK_BUFFER.
auto info = SkImageInfo::Make(16, 16, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkAutoPixmapStorage pmap = make_ref_data(info, /*forceOpaque=*/false);
auto image = SkImage::MakeFromRaster(pmap, nullptr, nullptr);
image = image->makeTextureImage(ctxInfo.directContext());
if (!image) {
ERRORF(reporter, "Couldn't make texture image.");
return;
}
AsyncContext asyncContext;
image->asyncRescaleAndReadPixels(info,
SkIRect::MakeSize(info.dimensions()),
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest,
async_callback,
&asyncContext);
// This will force the async readback to finish.
ctxInfo.directContext()->flushAndSubmit(true);
if (!asyncContext.fCalled) {
ERRORF(reporter, "async_callback not called.");
}
if (!asyncContext.fResult) {
ERRORF(reporter, "async read failed.");
}
SkPixmap asyncResult(info, asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0));
// Bug was that this would cause GrGLGpu to think no buffer was left bound to
// GL_PIXEL_PACK_BUFFER even though async transfer did leave one bound. So the sync read
// wouldn't bind buffer 0.
ctxInfo.directContext()->resetContext();
SkBitmap syncResult;
syncResult.allocPixels(info);
syncResult.eraseARGB(0xFF, 0xFF, 0xFF, 0xFF);
image->readPixels(ctxInfo.directContext(), syncResult.pixmap(), 0, 0);
float tol[4] = {}; // expect exactly same pixels, no conversions.
auto error = std::function<ComparePixmapsErrorReporter>([&](int x, int y,
const float diffs[4]) {
SkASSERT(x >= 0 && y >= 0);
ERRORF(reporter, "Expect sync and async read to be the same. "
"Error at %d, %d. Diff in floats: (%f, %f, %f, %f)",
x, y, diffs[0], diffs[1], diffs[2], diffs[3]);
});
ComparePixels(syncResult.pixmap(), asyncResult, tol, error);
}