blob: 21d0baf9f099d51d356e972ed72e898e792c2843 [file] [log] [blame]
/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkPathBuilder.h"
#include "include/core/SkPathTypes.h"
#include "include/core/SkRRect.h"
#include "src/core/SkPathPriv.h"
#include "tests/Test.h"
static void is_empty(skiatest::Reporter* reporter, const SkPath& p) {
REPORTER_ASSERT(reporter, p.getBounds().isEmpty());
REPORTER_ASSERT(reporter, p.countPoints() == 0);
}
DEF_TEST(pathbuilder, reporter) {
SkPathBuilder b;
is_empty(reporter, b.snapshot());
is_empty(reporter, b.detach());
b.moveTo(10, 10).lineTo(20, 20).quadTo(30, 10, 10, 20);
SkPath p0 = b.snapshot();
SkPath p1 = b.snapshot();
SkPath p2 = b.detach();
// Builders should always precompute the path's bounds, so there is no race condition later
REPORTER_ASSERT(reporter, SkPathPriv::HasComputedBounds(p0));
REPORTER_ASSERT(reporter, SkPathPriv::HasComputedBounds(p1));
REPORTER_ASSERT(reporter, SkPathPriv::HasComputedBounds(p2));
REPORTER_ASSERT(reporter, p0.getBounds() == SkRect::MakeLTRB(10, 10, 30, 20));
REPORTER_ASSERT(reporter, p0.countPoints() == 4);
REPORTER_ASSERT(reporter, p0 == p1);
REPORTER_ASSERT(reporter, p0 == p2);
is_empty(reporter, b.snapshot());
is_empty(reporter, b.detach());
}
DEF_TEST(pathbuilder_filltype, reporter) {
for (auto fillType : { SkPathFillType::kWinding,
SkPathFillType::kEvenOdd,
SkPathFillType::kInverseWinding,
SkPathFillType::kInverseEvenOdd }) {
SkPathBuilder b(fillType);
REPORTER_ASSERT(reporter, b.fillType() == fillType);
for (const SkPath& path : { b.snapshot(), b.detach() }) {
REPORTER_ASSERT(reporter, path.getFillType() == fillType);
is_empty(reporter, path);
}
}
}
static bool check_points(const SkPath& path, const SkPoint expected[], size_t count) {
std::vector<SkPoint> iter_pts;
for (auto [v, p, w] : SkPathPriv::Iterate(path)) {
switch (v) {
case SkPathVerb::kMove:
iter_pts.push_back(p[0]);
break;
case SkPathVerb::kLine:
iter_pts.push_back(p[1]);
break;
case SkPathVerb::kQuad:
case SkPathVerb::kConic:
iter_pts.push_back(p[1]);
iter_pts.push_back(p[2]);
break;
case SkPathVerb::kCubic:
iter_pts.push_back(p[1]);
iter_pts.push_back(p[2]);
iter_pts.push_back(p[3]);
break;
case SkPathVerb::kClose:
break;
}
}
if (iter_pts.size() != count) {
return false;
}
for (size_t i = 0; i < count; ++i) {
if (iter_pts[i] != expected[i]) {
return false;
}
}
return true;
}
DEF_TEST(pathbuilder_missing_move, reporter) {
SkPathBuilder b;
b.lineTo(10, 10).lineTo(20, 30);
const SkPoint pts0[] = {
{0, 0}, {10, 10}, {20, 30},
};
REPORTER_ASSERT(reporter, check_points(b.snapshot(), pts0, std::size(pts0)));
b.reset().moveTo(20, 20).lineTo(10, 10).lineTo(20, 30).close().lineTo(60, 60);
const SkPoint pts1[] = {
{20, 20}, {10, 10}, {20, 30},
{20, 20}, {60, 60},
};
REPORTER_ASSERT(reporter, check_points(b.snapshot(), pts1, std::size(pts1)));
}
DEF_TEST(pathbuilder_addRect, reporter) {
const SkRect r = { 10, 20, 30, 40 };
for (int i = 0; i < 4; ++i) {
for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) {
SkPathBuilder b;
b.addRect(r, dir, i);
auto bp = b.detach();
SkRect r2;
bool closed = false;
SkPathDirection dir2;
REPORTER_ASSERT(reporter, bp.isRect(&r2, &closed, &dir2));
REPORTER_ASSERT(reporter, r2 == r);
REPORTER_ASSERT(reporter, closed);
REPORTER_ASSERT(reporter, dir == dir2);
SkPath p;
p.addRect(r, dir, i);
REPORTER_ASSERT(reporter, p == bp);
}
}
}
static bool is_eq(const SkPath& a, const SkPath& b) {
if (a != b) {
return false;
}
{
SkRect ra, rb;
bool is_a = a.isOval(&ra);
bool is_b = b.isOval(&rb);
if (is_a != is_b) {
return false;
}
if (is_a && (ra != rb)) {
return false;
}
}
{
SkRRect rra, rrb;
bool is_a = a.isRRect(&rra);
bool is_b = b.isRRect(&rrb);
if (is_a != is_b) {
return false;
}
if (is_a && (rra != rrb)) {
return false;
}
}
// getConvextity() should be sufficient to test, but internally we sometimes don't want
// to trigger computing it, so this is the stronger test for equality.
{
SkPathConvexity ca = SkPathPriv::GetConvexityOrUnknown(a),
cb = SkPathPriv::GetConvexityOrUnknown(b);
if (ca != cb) {
return false;
}
}
return true;
}
DEF_TEST(pathbuilder_addOval, reporter) {
const SkRect r = { 10, 20, 30, 40 };
SkRect tmp;
for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) {
for (int i = 0; i < 4; ++i) {
auto bp = SkPathBuilder().addOval(r, dir, i).detach();
SkPath p;
p.addOval(r, dir, i);
REPORTER_ASSERT(reporter, is_eq(p, bp));
}
auto bp = SkPathBuilder().addOval(r, dir).detach();
SkPath p;
p.addOval(r, dir);
REPORTER_ASSERT(reporter, is_eq(p, bp));
// test negative case -- can't have any other segments
bp = SkPathBuilder().addOval(r, dir).lineTo(10, 10).detach();
REPORTER_ASSERT(reporter, !bp.isOval(&tmp));
bp = SkPathBuilder().lineTo(10, 10).addOval(r, dir).detach();
REPORTER_ASSERT(reporter, !bp.isOval(&tmp));
}
}
DEF_TEST(pathbuilder_addRRect, reporter) {
const SkRRect rr = SkRRect::MakeRectXY({ 10, 20, 30, 40 }, 5, 6);
for (auto dir : {SkPathDirection::kCW, SkPathDirection::kCCW}) {
for (int i = 0; i < 4; ++i) {
SkPathBuilder b;
b.addRRect(rr, dir, i);
auto bp = b.detach();
SkPath p;
p.addRRect(rr, dir, i);
REPORTER_ASSERT(reporter, is_eq(p, bp));
}
auto bp = SkPathBuilder().addRRect(rr, dir).detach();
SkPath p;
p.addRRect(rr, dir);
REPORTER_ASSERT(reporter, is_eq(p, bp));
// test negative case -- can't have any other segments
SkRRect tmp;
bp = SkPathBuilder().addRRect(rr, dir).lineTo(10, 10).detach();
REPORTER_ASSERT(reporter, !bp.isRRect(&tmp));
bp = SkPathBuilder().lineTo(10, 10).addRRect(rr, dir).detach();
REPORTER_ASSERT(reporter, !bp.isRRect(&tmp));
}
}
#include "include/utils/SkRandom.h"
DEF_TEST(pathbuilder_make, reporter) {
constexpr int N = 100;
uint8_t vbs[N];
SkPoint pts[N];
SkRandom rand;
SkPathBuilder b;
b.moveTo(0, 0);
pts[0] = {0, 0}; vbs[0] = (uint8_t)SkPathVerb::kMove;
for (int i = 1; i < N; ++i) {
float x = rand.nextF();
float y = rand.nextF();
b.lineTo(x, y);
pts[i] = {x, y}; vbs[i] = (uint8_t)SkPathVerb::kLine;
}
auto p0 = b.detach();
auto p1 = SkPath::Make(pts, N, vbs, N, nullptr, 0, p0.getFillType());
REPORTER_ASSERT(reporter, p0 == p1);
}
DEF_TEST(pathbuilder_genid, r) {
SkPathBuilder builder;
builder.lineTo(10, 10);
auto p1 = builder.snapshot();
builder.lineTo(10, 20);
auto p2 = builder.snapshot();
REPORTER_ASSERT(r, p1.getGenerationID() != p2.getGenerationID());
}
DEF_TEST(pathbuilder_addPolygon, reporter) {
SkPoint pts[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
auto addpoly = [](const SkPoint pts[], int count, bool isClosed) {
SkPathBuilder builder;
if (count > 0) {
builder.moveTo(pts[0]);
for (int i = 1; i < count; ++i) {
builder.lineTo(pts[i]);
}
if (isClosed) {
builder.close();
}
}
return builder.detach();
};
for (bool isClosed : {false, true}) {
for (size_t i = 0; i <= std::size(pts); ++i) {
auto path0 = SkPathBuilder().addPolygon(pts, i, isClosed).detach();
auto path1 = addpoly(pts, i, isClosed);
REPORTER_ASSERT(reporter, path0 == path1);
}
}
}
DEF_TEST(pathbuilder_shrinkToFit, reporter) {
// SkPathBuilder::snapshot() creates copies of its arrays for perfectly sized paths,
// where SkPathBuilder::detach() moves its larger scratch arrays for speed.
bool any_smaller = false;
for (int pts = 0; pts < 10; pts++) {
SkPathBuilder b;
for (int i = 0; i < pts; i++) {
b.lineTo(i,i);
}
b.close();
SkPath s = b.snapshot(),
d = b.detach();
REPORTER_ASSERT(reporter, s.approximateBytesUsed() <= d.approximateBytesUsed());
any_smaller |= s.approximateBytesUsed() < d.approximateBytesUsed();
}
REPORTER_ASSERT(reporter, any_smaller);
}
DEF_TEST(pathbuilder_addPath, reporter) {
const auto p = SkPath()
.moveTo(10, 10)
.lineTo(100, 10)
.quadTo(200, 100, 100, 200)
.close()
.moveTo(200, 200)
.cubicTo(210, 200, 210, 300, 200, 300)
.conicTo(150, 250, 100, 200, 1.4f);
REPORTER_ASSERT(reporter, p == SkPathBuilder().addPath(p).detach());
}
/*
* If paths were immutable, we would not have to track this, but until that day, we need
* to ensure that paths are built correctly/consistently with this field, regardless of
* either the classic mutable apis, or via SkPathBuilder (SkPath::Polygon uses builder).
*/
DEF_TEST(pathbuilder_lastmoveindex, reporter) {
const SkPoint pts[] = {
{0, 1}, {2, 3}, {4, 5},
};
constexpr int N = (int)std::size(pts);
for (int ctrCount = 1; ctrCount < 4; ++ctrCount) {
const int lastMoveToIndex = (ctrCount - 1) * N;
for (bool isClosed : {false, true}) {
SkPath a, b;
SkPathBuilder builder;
for (int i = 0; i < ctrCount; ++i) {
builder.addPolygon(pts, N, isClosed); // new-school way
b.addPoly(pts, N, isClosed); // old-school way
}
a = builder.detach();
// We track the last moveTo verb index, and we invert it if the last verb was a close
const int expected = isClosed ? ~lastMoveToIndex : lastMoveToIndex;
const int a_last = SkPathPriv::LastMoveToIndex(a);
const int b_last = SkPathPriv::LastMoveToIndex(b);
REPORTER_ASSERT(reporter, a_last == expected);
REPORTER_ASSERT(reporter, b_last == expected);
}
}
}