| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkMath.h" |
| #include "include/core/SkPoint3.h" |
| #include "include/utils/SkRandom.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkMatrixUtils.h" |
| #include "tests/Test.h" |
| |
| static bool nearly_equal_scalar(SkScalar a, SkScalar b) { |
| const SkScalar tolerance = SK_Scalar1 / 200000; |
| return SkScalarAbs(a - b) <= tolerance; |
| } |
| |
| static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) { |
| for (int i = 0; i < 9; i++) { |
| if (!nearly_equal_scalar(a[i], b[i])) { |
| SkDebugf("matrices not equal [%d] %g %g\n", i, (float)a[i], (float)b[i]); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int float_bits(float f) { |
| int result; |
| memcpy(&result, &f, 4); |
| return result; |
| } |
| |
| static bool are_equal(skiatest::Reporter* reporter, |
| const SkMatrix& a, |
| const SkMatrix& b) { |
| bool equal = a == b; |
| bool cheapEqual = SkMatrixPriv::CheapEqual(a, b); |
| if (equal != cheapEqual) { |
| if (equal) { |
| bool foundZeroSignDiff = false; |
| for (int i = 0; i < 9; ++i) { |
| float aVal = a.get(i); |
| float bVal = b.get(i); |
| int aValI = float_bits(aVal); |
| int bValI = float_bits(bVal); |
| if (0 == aVal && 0 == bVal && aValI != bValI) { |
| foundZeroSignDiff = true; |
| } else { |
| REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); |
| } |
| } |
| REPORTER_ASSERT(reporter, foundZeroSignDiff); |
| } else { |
| bool foundNaN = false; |
| for (int i = 0; i < 9; ++i) { |
| float aVal = a.get(i); |
| float bVal = b.get(i); |
| int aValI = float_bits(aVal); |
| int bValI = float_bits(bVal); |
| if (sk_float_isnan(aVal) && aValI == bValI) { |
| foundNaN = true; |
| } else { |
| REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); |
| } |
| } |
| REPORTER_ASSERT(reporter, foundNaN); |
| } |
| } |
| return equal; |
| } |
| |
| static bool is_identity(const SkMatrix& m) { |
| SkMatrix identity; |
| identity.reset(); |
| return nearly_equal(m, identity); |
| } |
| |
| static void assert9(skiatest::Reporter* reporter, const SkMatrix& m, |
| SkScalar a, SkScalar b, SkScalar c, |
| SkScalar d, SkScalar e, SkScalar f, |
| SkScalar g, SkScalar h, SkScalar i) { |
| SkScalar buffer[9]; |
| m.get9(buffer); |
| REPORTER_ASSERT(reporter, buffer[0] == a); |
| REPORTER_ASSERT(reporter, buffer[1] == b); |
| REPORTER_ASSERT(reporter, buffer[2] == c); |
| REPORTER_ASSERT(reporter, buffer[3] == d); |
| REPORTER_ASSERT(reporter, buffer[4] == e); |
| REPORTER_ASSERT(reporter, buffer[5] == f); |
| REPORTER_ASSERT(reporter, buffer[6] == g); |
| REPORTER_ASSERT(reporter, buffer[7] == h); |
| REPORTER_ASSERT(reporter, buffer[8] == i); |
| |
| REPORTER_ASSERT(reporter, m.rc(0, 0) == a); |
| REPORTER_ASSERT(reporter, m.rc(0, 1) == b); |
| REPORTER_ASSERT(reporter, m.rc(0, 2) == c); |
| REPORTER_ASSERT(reporter, m.rc(1, 0) == d); |
| REPORTER_ASSERT(reporter, m.rc(1, 1) == e); |
| REPORTER_ASSERT(reporter, m.rc(1, 2) == f); |
| REPORTER_ASSERT(reporter, m.rc(2, 0) == g); |
| REPORTER_ASSERT(reporter, m.rc(2, 1) == h); |
| REPORTER_ASSERT(reporter, m.rc(2, 2) == i); |
| } |
| |
| static void test_set9(skiatest::Reporter* reporter) { |
| |
| SkMatrix m; |
| m.reset(); |
| assert9(reporter, m, 1, 0, 0, 0, 1, 0, 0, 0, 1); |
| |
| m.setScale(2, 3); |
| assert9(reporter, m, 2, 0, 0, 0, 3, 0, 0, 0, 1); |
| |
| m.postTranslate(4, 5); |
| assert9(reporter, m, 2, 0, 4, 0, 3, 5, 0, 0, 1); |
| |
| SkScalar buffer[9]; |
| sk_bzero(buffer, sizeof(buffer)); |
| buffer[SkMatrix::kMScaleX] = 1; |
| buffer[SkMatrix::kMScaleY] = 1; |
| buffer[SkMatrix::kMPersp2] = 1; |
| REPORTER_ASSERT(reporter, !m.isIdentity()); |
| m.set9(buffer); |
| REPORTER_ASSERT(reporter, m.isIdentity()); |
| } |
| |
| static void test_matrix_recttorect(skiatest::Reporter* reporter) { |
| SkRect src, dst; |
| SkMatrix matrix; |
| |
| src.setLTRB(0, 0, 10, 10); |
| dst = src; |
| matrix = SkMatrix::RectToRect(src, dst); |
| REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| |
| dst.offset(1, 1); |
| matrix = SkMatrix::RectToRect(src, dst); |
| REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| |
| dst.fRight += 1; |
| matrix = SkMatrix::RectToRect(src, dst); |
| REPORTER_ASSERT(reporter, |
| (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| |
| dst = src; |
| dst.fRight = src.fRight * 2; |
| matrix = SkMatrix::RectToRect(src, dst); |
| REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| } |
| |
| static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) { |
| // add 100 in case we have a bug, I don't want to kill my stack in the test |
| static const size_t kBufferSize = SkMatrixPriv::kMaxFlattenSize + 100; |
| char buffer[kBufferSize]; |
| size_t size1 = SkMatrixPriv::WriteToMemory(m, nullptr); |
| size_t size2 = SkMatrixPriv::WriteToMemory(m, buffer); |
| REPORTER_ASSERT(reporter, size1 == size2); |
| REPORTER_ASSERT(reporter, size1 <= SkMatrixPriv::kMaxFlattenSize); |
| |
| SkMatrix m2; |
| size_t size3 = SkMatrixPriv::ReadFromMemory(&m2, buffer, kBufferSize); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, are_equal(reporter, m, m2)); |
| |
| char buffer2[kBufferSize]; |
| size3 = SkMatrixPriv::WriteToMemory(m2, buffer2); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); |
| } |
| |
| static void test_matrix_min_max_scale(skiatest::Reporter* reporter) { |
| SkScalar scales[2]; |
| bool success; |
| |
| SkMatrix identity; |
| identity.reset(); |
| REPORTER_ASSERT(reporter, 1 == identity.getMinScale()); |
| REPORTER_ASSERT(reporter, 1 == identity.getMaxScale()); |
| success = identity.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success && 1 == scales[0] && 1 == scales[1]); |
| |
| SkMatrix scale; |
| scale.setScale(2, 4); |
| REPORTER_ASSERT(reporter, 2 == scale.getMinScale()); |
| REPORTER_ASSERT(reporter, 4 == scale.getMaxScale()); |
| success = scale.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success && 2 == scales[0] && 4 == scales[1]); |
| |
| SkMatrix rot90Scale; |
| rot90Scale.setRotate(90).postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); |
| REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale()); |
| REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale()); |
| success = rot90Scale.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4 == scales[0] && SK_Scalar1 / 2 == scales[1]); |
| |
| SkMatrix rotate; |
| rotate.setRotate(128); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, rotate.getMinScale(), SK_ScalarNearlyZero)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, rotate.getMaxScale(), SK_ScalarNearlyZero)); |
| success = rotate.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, scales[0], SK_ScalarNearlyZero)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(1, scales[1], SK_ScalarNearlyZero)); |
| |
| SkMatrix translate; |
| translate.setTranslate(10, -5); |
| REPORTER_ASSERT(reporter, 1 == translate.getMinScale()); |
| REPORTER_ASSERT(reporter, 1 == translate.getMaxScale()); |
| success = translate.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success && 1 == scales[0] && 1 == scales[1]); |
| |
| SkMatrix perspX; |
| perspX.reset().setPerspX(SK_Scalar1 / 1000); |
| REPORTER_ASSERT(reporter, -1 == perspX.getMinScale()); |
| REPORTER_ASSERT(reporter, -1 == perspX.getMaxScale()); |
| success = perspX.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, !success); |
| |
| // skbug.com/4718 |
| SkMatrix big; |
| big.setAll(2.39394089e+36f, 8.85347779e+36f, 9.26526204e+36f, |
| 3.9159619e+36f, 1.44823453e+37f, 1.51559342e+37f, |
| 0.f, 0.f, 1.f); |
| success = big.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, !success); |
| |
| // skbug.com/4718 |
| SkMatrix givingNegativeNearlyZeros; |
| givingNegativeNearlyZeros.setAll(0.00436534f, 0.114138f, 0.37141f, |
| 0.00358857f, 0.0936228f, -0.0174198f, |
| 0.f, 0.f, 1.f); |
| success = givingNegativeNearlyZeros.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success && 0 == scales[0]); |
| |
| SkMatrix perspY; |
| perspY.reset().setPerspY(-SK_Scalar1 / 500); |
| REPORTER_ASSERT(reporter, -1 == perspY.getMinScale()); |
| REPORTER_ASSERT(reporter, -1 == perspY.getMaxScale()); |
| scales[0] = -5; |
| scales[1] = -5; |
| success = perspY.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, !success && -5 == scales[0] && -5 == scales[1]); |
| |
| SkMatrix baseMats[] = {scale, rot90Scale, rotate, |
| translate, perspX, perspY}; |
| SkMatrix mats[2*std::size(baseMats)]; |
| for (size_t i = 0; i < std::size(baseMats); ++i) { |
| mats[i] = baseMats[i]; |
| bool invertible = mats[i].invert(&mats[i + std::size(baseMats)]); |
| REPORTER_ASSERT(reporter, invertible); |
| } |
| SkRandom rand; |
| for (int m = 0; m < 1000; ++m) { |
| SkMatrix mat; |
| mat.reset(); |
| for (int i = 0; i < 4; ++i) { |
| int x = rand.nextU() % std::size(mats); |
| mat.postConcat(mats[x]); |
| } |
| |
| SkScalar minScale = mat.getMinScale(); |
| SkScalar maxScale = mat.getMaxScale(); |
| REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0)); |
| REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective()); |
| |
| success = mat.getMinMaxScales(scales); |
| REPORTER_ASSERT(reporter, success == !mat.hasPerspective()); |
| REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale)); |
| |
| if (mat.hasPerspective()) { |
| m -= 1; // try another non-persp matrix |
| continue; |
| } |
| |
| // test a bunch of vectors. All should be scaled by between minScale and maxScale |
| // (modulo some error) and we should find a vector that is scaled by almost each. |
| static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100; |
| static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100; |
| SkScalar max = 0, min = SK_ScalarMax; |
| SkVector vectors[1000]; |
| for (size_t i = 0; i < std::size(vectors); ++i) { |
| vectors[i].fX = rand.nextSScalar1(); |
| vectors[i].fY = rand.nextSScalar1(); |
| if (!vectors[i].normalize()) { |
| i -= 1; |
| continue; |
| } |
| } |
| mat.mapVectors(vectors, std::size(vectors)); |
| for (size_t i = 0; i < std::size(vectors); ++i) { |
| SkScalar d = vectors[i].length(); |
| REPORTER_ASSERT(reporter, d / maxScale < gVectorScaleTol); |
| REPORTER_ASSERT(reporter, minScale / d < gVectorScaleTol); |
| if (max < d) { |
| max = d; |
| } |
| if (min > d) { |
| min = d; |
| } |
| } |
| REPORTER_ASSERT(reporter, max / maxScale >= gCloseScaleTol); |
| REPORTER_ASSERT(reporter, minScale / min >= gCloseScaleTol); |
| } |
| } |
| |
| static void test_matrix_preserve_shape(skiatest::Reporter* reporter) { |
| SkMatrix mat; |
| |
| // identity |
| mat.setIdentity(); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // translation only |
| mat.setTranslate(100, 100); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // scale with same size |
| mat.setScale(15, 15); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // scale with one negative |
| mat.setScale(-15, 15); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // scale with different size |
| mat.setScale(15, 20); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // scale with same size at a pivot point |
| mat.setScale(15, 15, 2, 2); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // scale with different size at a pivot point |
| mat.setScale(15, 20, 2, 2); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // skew with same size |
| mat.setSkew(15, 15); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // skew with different size |
| mat.setSkew(15, 20); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // skew with same size at a pivot point |
| mat.setSkew(15, 15, 2, 2); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // skew with different size at a pivot point |
| mat.setSkew(15, 20, 2, 2); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // perspective x |
| mat.reset().setPerspX(SK_Scalar1 / 2); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // perspective y |
| mat.reset().setPerspY(SK_Scalar1 / 2); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // rotate |
| for (int angle = 0; angle < 360; ++angle) { |
| mat.setRotate(SkIntToScalar(angle)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| } |
| |
| // see if there are any accumulated precision issues |
| mat.reset(); |
| for (int i = 1; i < 360; i++) { |
| mat.postRotate(1); |
| } |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // rotate + translate |
| mat.setRotate(30).postTranslate(10, 20); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // rotate + uniform scale |
| mat.setRotate(30).postScale(2, 2); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // rotate + non-uniform scale |
| mat.setRotate(30).postScale(3, 2); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // non-uniform scale + rotate |
| mat.setScale(3, 2).postRotate(30); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // all zero |
| mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // all zero except perspective |
| mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 1); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, !mat.preservesRightAngles()); |
| |
| // scales zero, only skews (rotation) |
| mat.setAll(0, 1, 0, |
| -1, 0, 0, |
| 0, 0, 1); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| |
| // scales zero, only skews (reflection) |
| mat.setAll(0, 1, 0, |
| 1, 0, 0, |
| 0, 0, 1); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| REPORTER_ASSERT(reporter, mat.preservesRightAngles()); |
| } |
| |
| // For test_matrix_decomposition, below. |
| static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, |
| SkScalar tolerance = SK_ScalarNearlyZero) { |
| // from Bruce Dawson |
| // absolute check |
| SkScalar diff = SkScalarAbs(a - b); |
| if (diff < tolerance) { |
| return true; |
| } |
| |
| // relative check |
| a = SkScalarAbs(a); |
| b = SkScalarAbs(b); |
| SkScalar largest = (b > a) ? b : a; |
| |
| if (diff <= largest*tolerance) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool check_matrix_recomposition(const SkMatrix& mat, |
| const SkPoint& rotation1, |
| const SkPoint& scale, |
| const SkPoint& rotation2) { |
| SkScalar c1 = rotation1.fX; |
| SkScalar s1 = rotation1.fY; |
| SkScalar scaleX = scale.fX; |
| SkScalar scaleY = scale.fY; |
| SkScalar c2 = rotation2.fX; |
| SkScalar s2 = rotation2.fY; |
| |
| // We do a relative check here because large scale factors cause problems with an absolute check |
| bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], |
| scaleX*c1*c2 - scaleY*s1*s2) && |
| scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], |
| -scaleX*s1*c2 - scaleY*c1*s2) && |
| scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], |
| scaleX*c1*s2 + scaleY*s1*c2) && |
| scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], |
| -scaleX*s1*s2 + scaleY*c1*c2); |
| return result; |
| } |
| |
| static void test_matrix_decomposition(skiatest::Reporter* reporter) { |
| SkMatrix mat; |
| SkPoint rotation1, scale, rotation2; |
| |
| const float kRotation0 = 15.5f; |
| const float kRotation1 = -50.f; |
| const float kScale0 = 5000.f; |
| const float kScale1 = 0.001f; |
| |
| // identity |
| mat.reset(); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| // make sure it doesn't crash if we pass in NULLs |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, nullptr, nullptr, nullptr)); |
| |
| // rotation only |
| mat.setRotate(kRotation0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // uniform scale only |
| mat.setScale(kScale0, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // anisotropic scale only |
| mat.setScale(kScale1, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then uniform scale |
| mat.setRotate(kRotation1).postScale(kScale0, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // uniform scale then rotation |
| mat.setScale(kScale0, kScale0).postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then uniform scale+reflection |
| mat.setRotate(kRotation0).postScale(kScale1, -kScale1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // uniform scale+reflection, then rotate |
| mat.setScale(kScale0, -kScale0).postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then anisotropic scale |
| mat.setRotate(kRotation1).postScale(kScale1, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then anisotropic scale |
| mat.setRotate(90).postScale(kScale1, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // anisotropic scale then rotation |
| mat.setScale(kScale1, kScale0).postRotate(kRotation0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // anisotropic scale then rotation |
| mat.setScale(kScale1, kScale0).postRotate(90); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation, uniform scale, then different rotation |
| mat.setRotate(kRotation1).postScale(kScale0, kScale0).postRotate(kRotation0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation, anisotropic scale, then different rotation |
| mat.setRotate(kRotation0).postScale(kScale1, kScale0).postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation, anisotropic scale + reflection, then different rotation |
| mat.setRotate(kRotation0).postScale(-kScale1, kScale0).postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // try some random matrices |
| SkRandom rand; |
| for (int m = 0; m < 1000; ++m) { |
| SkScalar rot0 = rand.nextRangeF(-180, 180); |
| SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); |
| SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); |
| SkScalar rot1 = rand.nextRangeF(-180, 180); |
| mat.setRotate(rot0).postScale(sx, sy).postRotate(rot1); |
| |
| if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) { |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| } else { |
| // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero |
| SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - |
| mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); |
| } |
| } |
| |
| // translation shouldn't affect this |
| mat.postTranslate(-1000.f, 1000.f); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // perspective shouldn't affect this |
| mat[SkMatrix::kMPersp0] = 12.f; |
| mat[SkMatrix::kMPersp1] = 4.f; |
| mat[SkMatrix::kMPersp2] = 1872.f; |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // degenerate matrices |
| // mostly zero entries |
| mat.reset(); |
| mat[SkMatrix::kMScaleX] = 0.f; |
| REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| mat.reset(); |
| mat[SkMatrix::kMScaleY] = 0.f; |
| REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| mat.reset(); |
| // linearly dependent entries |
| mat[SkMatrix::kMScaleX] = 1.f; |
| mat[SkMatrix::kMSkewX] = 2.f; |
| mat[SkMatrix::kMSkewY] = 4.f; |
| mat[SkMatrix::kMScaleY] = 8.f; |
| REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| } |
| |
| // For test_matrix_homogeneous, below. |
| static bool point3_array_nearly_equal_relative(const SkPoint3 a[], const SkPoint3 b[], int count) { |
| for (int i = 0; i < count; ++i) { |
| if (!scalar_nearly_equal_relative(a[i].fX, b[i].fX)) { |
| return false; |
| } |
| if (!scalar_nearly_equal_relative(a[i].fY, b[i].fY)) { |
| return false; |
| } |
| if (!scalar_nearly_equal_relative(a[i].fZ, b[i].fZ)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // For test_matrix_homogeneous, below. |
| // Maps a single triple in src using m and compares results to those in dst |
| static bool naive_homogeneous_mapping(const SkMatrix& m, const SkPoint3& src, |
| const SkPoint3& dst) { |
| SkPoint3 res; |
| SkScalar ms[9] = {m[0], m[1], m[2], |
| m[3], m[4], m[5], |
| m[6], m[7], m[8]}; |
| res.fX = src.fX * ms[0] + src.fY * ms[1] + src.fZ * ms[2]; |
| res.fY = src.fX * ms[3] + src.fY * ms[4] + src.fZ * ms[5]; |
| res.fZ = src.fX * ms[6] + src.fY * ms[7] + src.fZ * ms[8]; |
| return point3_array_nearly_equal_relative(&res, &dst, 1); |
| } |
| |
| static void test_matrix_homogeneous(skiatest::Reporter* reporter) { |
| SkMatrix mat; |
| |
| const float kRotation0 = 15.5f; |
| const float kRotation1 = -50.f; |
| const float kScale0 = 5000.f; |
| |
| #if defined(SK_BUILD_FOR_GOOGLE3) |
| // Stack frame size is limited in SK_BUILD_FOR_GOOGLE3. |
| const int kTripleCount = 100; |
| const int kMatrixCount = 100; |
| #else |
| const int kTripleCount = 1000; |
| const int kMatrixCount = 1000; |
| #endif |
| SkRandom rand; |
| |
| SkPoint3 randTriples[kTripleCount]; |
| for (int i = 0; i < kTripleCount; ++i) { |
| randTriples[i].fX = rand.nextRangeF(-3000.f, 3000.f); |
| randTriples[i].fY = rand.nextRangeF(-3000.f, 3000.f); |
| randTriples[i].fZ = rand.nextRangeF(-3000.f, 3000.f); |
| } |
| |
| SkMatrix mats[kMatrixCount]; |
| for (int i = 0; i < kMatrixCount; ++i) { |
| for (int j = 0; j < 9; ++j) { |
| mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f)); |
| } |
| } |
| |
| // identity |
| { |
| mat.reset(); |
| SkPoint3 dst[kTripleCount]; |
| mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); |
| REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(randTriples, dst, kTripleCount)); |
| } |
| |
| const SkPoint3 zeros = {0.f, 0.f, 0.f}; |
| // zero matrix |
| { |
| mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); |
| SkPoint3 dst[kTripleCount]; |
| mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); |
| for (int i = 0; i < kTripleCount; ++i) { |
| REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst[i], &zeros, 1)); |
| } |
| } |
| |
| // zero point |
| { |
| for (int i = 0; i < kMatrixCount; ++i) { |
| SkPoint3 dst; |
| mats[i].mapHomogeneousPoints(&dst, &zeros, 1); |
| REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst, &zeros, 1)); |
| } |
| } |
| |
| // doesn't crash with null dst, src, count == 0 |
| { |
| mats[0].mapHomogeneousPoints(nullptr, (const SkPoint3*)nullptr, 0); |
| } |
| |
| // uniform scale of point |
| { |
| mat.setScale(kScale0, kScale0); |
| SkPoint3 dst; |
| SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f}; |
| SkPoint pnt; |
| pnt.set(src.fX, src.fY); |
| mat.mapHomogeneousPoints(&dst, &src, 1); |
| mat.mapPoints(&pnt, &pnt, 1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, 1)); |
| } |
| |
| // rotation of point |
| { |
| mat.setRotate(kRotation0); |
| SkPoint3 dst; |
| SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f}; |
| SkPoint pnt; |
| pnt.set(src.fX, src.fY); |
| mat.mapHomogeneousPoints(&dst, &src, 1); |
| mat.mapPoints(&pnt, &pnt, 1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, 1)); |
| } |
| |
| // rotation, scale, rotation of point |
| { |
| mat.setRotate(kRotation1); |
| mat.postScale(kScale0, kScale0); |
| mat.postRotate(kRotation0); |
| SkPoint3 dst; |
| SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f}; |
| SkPoint pnt; |
| pnt.set(src.fX, src.fY); |
| mat.mapHomogeneousPoints(&dst, &src, 1); |
| mat.mapPoints(&pnt, &pnt, 1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, 1)); |
| } |
| |
| // compare with naive approach |
| { |
| for (int i = 0; i < kMatrixCount; ++i) { |
| for (int j = 0; j < kTripleCount; ++j) { |
| SkPoint3 dst; |
| mats[i].mapHomogeneousPoints(&dst, &randTriples[j], 1); |
| REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], randTriples[j], dst)); |
| } |
| } |
| } |
| |
| } |
| |
| static bool check_decompScale(const SkMatrix& original) { |
| SkSize scale; |
| SkMatrix remaining; |
| |
| if (!original.decomposeScale(&scale, &remaining)) { |
| return false; |
| } |
| if (scale.width() <= 0 || scale.height() <= 0) { |
| return false; |
| } |
| |
| // First ensure that the decomposition reconstitutes back to the original |
| { |
| SkMatrix reconstituted = remaining; |
| |
| reconstituted.preScale(scale.width(), scale.height()); |
| if (!nearly_equal(original, reconstituted)) { |
| return false; |
| } |
| } |
| |
| // Then push some points through both paths and make sure they are the same. |
| static const int kNumPoints = 5; |
| const SkPoint testPts[kNumPoints] = { |
| { 0.0f, 0.0f }, |
| { 1.0f, 1.0f }, |
| { 1.0f, 0.5f }, |
| { -1.0f, -0.5f }, |
| { -1.0f, 2.0f } |
| }; |
| |
| SkPoint v1[kNumPoints]; |
| original.mapPoints(v1, testPts, kNumPoints); |
| |
| SkPoint v2[kNumPoints]; |
| SkMatrix scaleMat = SkMatrix::Scale(scale.width(), scale.height()); |
| |
| // Note, we intend the decomposition to be applied in the order scale and then remainder but, |
| // due to skbug.com/7211, the order is reversed! |
| scaleMat.mapPoints(v2, testPts, kNumPoints); |
| remaining.mapPoints(v2, kNumPoints); |
| |
| for (int i = 0; i < kNumPoints; ++i) { |
| if (!SkPointPriv::EqualsWithinTolerance(v1[i], v2[i], 0.00001f)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void test_decompScale(skiatest::Reporter* reporter) { |
| SkMatrix m; |
| |
| m.reset(); |
| REPORTER_ASSERT(reporter, check_decompScale(m)); |
| m.setScale(2, 3); |
| REPORTER_ASSERT(reporter, check_decompScale(m)); |
| m.setRotate(35, 0, 0); |
| REPORTER_ASSERT(reporter, check_decompScale(m)); |
| |
| m.setScale(1, 0); |
| REPORTER_ASSERT(reporter, !check_decompScale(m)); |
| |
| m.setRotate(35, 0, 0).preScale(2, 3); |
| REPORTER_ASSERT(reporter, check_decompScale(m)); |
| |
| m.setRotate(35, 0, 0).postScale(2, 3); |
| REPORTER_ASSERT(reporter, check_decompScale(m)); |
| } |
| |
| DEF_TEST(Matrix, reporter) { |
| SkMatrix mat, inverse, iden1, iden2; |
| |
| mat.reset(); |
| mat.setTranslate(1, 1); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| mat.setScale(2, 4); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| test_flatten(reporter, mat); |
| |
| mat.setScale(SK_Scalar1/2, 2); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| test_flatten(reporter, mat); |
| |
| mat.setScale(3, 5, 20, 0).postRotate(25); |
| REPORTER_ASSERT(reporter, mat.invert(nullptr)); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| iden2.setConcat(inverse, mat); |
| REPORTER_ASSERT(reporter, is_identity(iden2)); |
| test_flatten(reporter, mat); |
| test_flatten(reporter, iden2); |
| |
| mat.setScale(0, 1); |
| REPORTER_ASSERT(reporter, !mat.invert(nullptr)); |
| REPORTER_ASSERT(reporter, !mat.invert(&inverse)); |
| mat.setScale(1, 0); |
| REPORTER_ASSERT(reporter, !mat.invert(nullptr)); |
| REPORTER_ASSERT(reporter, !mat.invert(&inverse)); |
| |
| // Inverting this matrix results in a non-finite matrix |
| mat.setAll(0.0f, 1.0f, 2.0f, |
| 0.0f, 1.0f, -3.40277175e+38f, |
| 1.00003040f, 1.0f, 0.0f); |
| REPORTER_ASSERT(reporter, !mat.invert(nullptr)); |
| REPORTER_ASSERT(reporter, !mat.invert(&inverse)); |
| |
| // rectStaysRect test |
| { |
| static const struct { |
| SkScalar m00, m01, m10, m11; |
| bool mStaysRect; |
| } |
| gRectStaysRectSamples[] = { |
| { 0, 0, 0, 0, false }, |
| { 0, 0, 0, 1, false }, |
| { 0, 0, 1, 0, false }, |
| { 0, 0, 1, 1, false }, |
| { 0, 1, 0, 0, false }, |
| { 0, 1, 0, 1, false }, |
| { 0, 1, 1, 0, true }, |
| { 0, 1, 1, 1, false }, |
| { 1, 0, 0, 0, false }, |
| { 1, 0, 0, 1, true }, |
| { 1, 0, 1, 0, false }, |
| { 1, 0, 1, 1, false }, |
| { 1, 1, 0, 0, false }, |
| { 1, 1, 0, 1, false }, |
| { 1, 1, 1, 0, false }, |
| { 1, 1, 1, 1, false } |
| }; |
| |
| for (size_t i = 0; i < std::size(gRectStaysRectSamples); i++) { |
| SkMatrix m; |
| |
| m.reset(); |
| m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00); |
| m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01); |
| m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10); |
| m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11); |
| REPORTER_ASSERT(reporter, |
| m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect); |
| } |
| } |
| |
| mat.reset(); |
| mat.set(SkMatrix::kMScaleX, 1) |
| .set(SkMatrix::kMSkewX, 2) |
| .set(SkMatrix::kMTransX, 3) |
| .set(SkMatrix::kMSkewY, 4) |
| .set(SkMatrix::kMScaleY, 5) |
| .set(SkMatrix::kMTransY, 6); |
| SkScalar affine[6]; |
| REPORTER_ASSERT(reporter, mat.asAffine(affine)); |
| |
| #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e) |
| REPORTER_ASSERT(reporter, affineEqual(ScaleX)); |
| REPORTER_ASSERT(reporter, affineEqual(SkewY)); |
| REPORTER_ASSERT(reporter, affineEqual(SkewX)); |
| REPORTER_ASSERT(reporter, affineEqual(ScaleY)); |
| REPORTER_ASSERT(reporter, affineEqual(TransX)); |
| REPORTER_ASSERT(reporter, affineEqual(TransY)); |
| #undef affineEqual |
| |
| mat.set(SkMatrix::kMPersp1, SK_Scalar1 / 2); |
| REPORTER_ASSERT(reporter, !mat.asAffine(affine)); |
| |
| SkMatrix mat2; |
| mat2.reset(); |
| mat.reset(); |
| SkScalar zero = 0; |
| mat.set(SkMatrix::kMSkewX, -zero); |
| REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); |
| |
| mat2.reset(); |
| mat.reset(); |
| mat.set(SkMatrix::kMSkewX, SK_ScalarNaN); |
| mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN); |
| REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2)); |
| |
| test_matrix_min_max_scale(reporter); |
| test_matrix_preserve_shape(reporter); |
| test_matrix_recttorect(reporter); |
| test_matrix_decomposition(reporter); |
| test_matrix_homogeneous(reporter); |
| test_set9(reporter); |
| |
| test_decompScale(reporter); |
| |
| mat.setScaleTranslate(2, 3, 1, 4); |
| mat2.setScale(2, 3).postTranslate(1, 4); |
| REPORTER_ASSERT(reporter, mat == mat2); |
| } |
| |
| DEF_TEST(Matrix_Concat, r) { |
| SkMatrix a; |
| a.setTranslate(10, 20); |
| |
| SkMatrix b; |
| b.setScale(3, 5); |
| |
| SkMatrix expected; |
| expected.setConcat(a,b); |
| |
| REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b)); |
| } |
| |
| // Test that all variants of maprect are correct. |
| DEF_TEST(Matrix_maprects, r) { |
| const SkScalar scale = 1000; |
| |
| SkMatrix mat; |
| mat.setScale(2, 3).postTranslate(1, 4); |
| |
| SkRandom rand; |
| for (int i = 0; i < 10000; ++i) { |
| SkRect src = SkRect::MakeLTRB(rand.nextSScalar1() * scale, |
| rand.nextSScalar1() * scale, |
| rand.nextSScalar1() * scale, |
| rand.nextSScalar1() * scale); |
| SkRect dst[4]; |
| |
| mat.mapPoints((SkPoint*)&dst[0].fLeft, (SkPoint*)&src.fLeft, 2); |
| dst[0].sort(); |
| mat.mapRect(&dst[1], src); |
| mat.mapRectScaleTranslate(&dst[2], src); |
| dst[3] = mat.mapRect(src); |
| |
| REPORTER_ASSERT(r, dst[0] == dst[1]); |
| REPORTER_ASSERT(r, dst[0] == dst[2]); |
| REPORTER_ASSERT(r, dst[0] == dst[3]); |
| } |
| |
| // We should report nonfinite-ness after a mapping |
| { |
| // We have special-cases in mapRect for different matrix types |
| SkMatrix m0 = SkMatrix::Scale(1e20f, 1e20f); |
| SkMatrix m1; m1.setRotate(30); m1.postScale(1e20f, 1e20f); |
| |
| for (const auto& m : { m0, m1 }) { |
| SkRect rect = { 0, 0, 1e20f, 1e20f }; |
| REPORTER_ASSERT(r, rect.isFinite()); |
| rect = m.mapRect(rect); |
| REPORTER_ASSERT(r, !rect.isFinite()); |
| } |
| } |
| } |
| |
| DEF_TEST(Matrix_mapRect_skbug12335, r) { |
| // Stripped down test case from skbug.com/12335. Essentially, the corners of this rect would |
| // map to homogoneous coords with very small w's (below the old value of kW0PlaneDistance) and |
| // so they would be clipped "behind" the plane, resulting in an empty mapped rect. Coordinates |
| // with positive that wouldn't overflow when divided by w should still be included in the mapped |
| // rectangle. |
| SkRect rect = SkRect::MakeLTRB(0, 0, 319, 620); |
| SkMatrix m = SkMatrix::MakeAll( 0.000152695269f, 0.00000000f, -6.53848401e-05f, |
| -1.75697533e-05f, 0.000157153074f, -1.10847975e-06f, |
| -6.00415362e-08f, 0.00000000f, 0.000169880834f); |
| SkRect out = m.mapRect(rect); |
| REPORTER_ASSERT(r, !out.isEmpty()); |
| } |
| |
| DEF_TEST(Matrix_Ctor, r) { |
| REPORTER_ASSERT(r, SkMatrix{} == SkMatrix::I()); |
| } |
| |
| DEF_TEST(Matrix_LookAt, r) { |
| // Degenerate inputs should not trigger *SAN errors. |
| const auto m = SkM44::LookAt({0,0,0}, {0,0,0}, {0,0,0}); |
| REPORTER_ASSERT(r, m == SkM44()); |
| } |
| |
| DEF_TEST(Matrix_SetRotateSnap, r) { |
| SkMatrix m; |
| |
| // We need to snap sin & cos when we call setRotate, or rotations by multiples of 90 degrees |
| // will end up with slight drift (and we won't consider them to satisfy rectStaysRect, which |
| // is an important performance constraint). We test up to +-1080 degrees. |
| for (float deg = 90.0f; deg <= 1080.0f; deg += 90.0f) { |
| m.setRotate(deg); |
| REPORTER_ASSERT(r, m.rectStaysRect()); |
| m.setRotate(-deg); |
| REPORTER_ASSERT(r, m.rectStaysRect()); |
| } |
| |
| // But: we don't want to be too lenient with snapping. That prevents small rotations from being |
| // registered at all. Ensure that .01 degrees produces an actual rotation. (crbug.com/1345038) |
| m.setRotate(0.01f); |
| REPORTER_ASSERT(r, !m.rectStaysRect()); |
| } |