| |
| /* |
| * Copyright 2020 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/v1/ClipStack.h" |
| #include "tests/Test.h" |
| |
| #include "include/core/SkColorSpace.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkRRect.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRegion.h" |
| #include "include/core/SkShader.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "src/core/SkMatrixProvider.h" |
| #include "src/core/SkRRectPriv.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/gpu/ganesh/GrDirectContextPriv.h" |
| #include "src/gpu/ganesh/GrProxyProvider.h" |
| #include "src/gpu/ganesh/ops/GrDrawOp.h" |
| #include "src/gpu/ganesh/v1/SurfaceDrawContext_v1.h" |
| |
| namespace { |
| |
| class TestCaseBuilder; |
| class ElementsBuilder; |
| |
| enum class SavePolicy { |
| kNever, |
| kAtStart, |
| kAtEnd, |
| kBetweenEveryOp |
| }; |
| // TODO: We could add a RestorePolicy enum that tests different places to restore, but that would |
| // make defining the test expectations and order independence more cumbersome. |
| |
| class TestCase { |
| public: |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| // Provides fluent API to describe actual clip commands and expected clip elements: |
| // TestCase test = TestCase::Build("example", deviceBounds) |
| // .actual().rect(r, GrAA::kYes, SkClipOp::kIntersect) |
| // .localToDevice(matrix) |
| // .nonAA() |
| // .difference() |
| // .path(p1) |
| // .path(p2) |
| // .finishElements() |
| // .expectedState(kDeviceRect) |
| // .expectedBounds(r.roundOut()) |
| // .expect().rect(r, GrAA::kYes, SkClipOp::kIntersect) |
| // .finishElements() |
| // .finishTest(); |
| static TestCaseBuilder Build(const char* name, const SkIRect& deviceBounds); |
| |
| void run(const std::vector<int>& order, SavePolicy policy, skiatest::Reporter* reporter) const; |
| |
| const SkIRect& deviceBounds() const { return fDeviceBounds; } |
| ClipStack::ClipState expectedState() const { return fExpectedState; } |
| const std::vector<ClipStack::Element>& initialElements() const { return fElements; } |
| const std::vector<ClipStack::Element>& expectedElements() const { return fExpectedElements; } |
| |
| private: |
| friend class TestCaseBuilder; |
| |
| TestCase(SkString name, |
| const SkIRect& deviceBounds, |
| ClipStack::ClipState expectedState, |
| std::vector<ClipStack::Element> actual, |
| std::vector<ClipStack::Element> expected) |
| : fName(name) |
| , fElements(std::move(actual)) |
| , fDeviceBounds(deviceBounds) |
| , fExpectedElements(std::move(expected)) |
| , fExpectedState(expectedState) {} |
| |
| SkString getTestName(const std::vector<int>& order, SavePolicy policy) const; |
| |
| // This may be tighter than ClipStack::getConservativeBounds() because this always accounts |
| // for difference ops, whereas ClipStack only sometimes can subtract the inner bounds for a |
| // difference op. |
| std::pair<SkIRect, bool> getOptimalBounds() const; |
| |
| SkString fName; |
| |
| // The input shapes+state to ClipStack |
| std::vector<ClipStack::Element> fElements; |
| SkIRect fDeviceBounds; |
| |
| // The expected output of iterating over the ClipStack after all fElements are added, although |
| // order is not important |
| std::vector<ClipStack::Element> fExpectedElements; |
| ClipStack::ClipState fExpectedState; |
| }; |
| |
| class ElementsBuilder { |
| public: |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| // Update the default matrix, aa, and op state for elements that are added. |
| ElementsBuilder& localToDevice(const SkMatrix& m) { fLocalToDevice = m; return *this; } |
| ElementsBuilder& aa() { fAA = GrAA::kYes; return *this; } |
| ElementsBuilder& nonAA() { fAA = GrAA::kNo; return *this; } |
| ElementsBuilder& intersect() { fOp = SkClipOp::kIntersect; return *this; } |
| ElementsBuilder& difference() { fOp = SkClipOp::kDifference; return *this; } |
| |
| // Add rect, rrect, or paths to the list of elements, possibly overriding the last set |
| // matrix, aa, and op state. |
| ElementsBuilder& rect(const SkRect& rect) { |
| return this->rect(rect, fLocalToDevice, fAA, fOp); |
| } |
| ElementsBuilder& rect(const SkRect& rect, GrAA aa, SkClipOp op) { |
| return this->rect(rect, fLocalToDevice, aa, op); |
| } |
| ElementsBuilder& rect(const SkRect& rect, const SkMatrix& m, GrAA aa, SkClipOp op) { |
| fElements->push_back({GrShape(rect), m, op, aa}); |
| return *this; |
| } |
| |
| ElementsBuilder& rrect(const SkRRect& rrect) { |
| return this->rrect(rrect, fLocalToDevice, fAA, fOp); |
| } |
| ElementsBuilder& rrect(const SkRRect& rrect, GrAA aa, SkClipOp op) { |
| return this->rrect(rrect, fLocalToDevice, aa, op); |
| } |
| ElementsBuilder& rrect(const SkRRect& rrect, const SkMatrix& m, GrAA aa, SkClipOp op) { |
| fElements->push_back({GrShape(rrect), m, op, aa}); |
| return *this; |
| } |
| |
| ElementsBuilder& path(const SkPath& path) { |
| return this->path(path, fLocalToDevice, fAA, fOp); |
| } |
| ElementsBuilder& path(const SkPath& path, GrAA aa, SkClipOp op) { |
| return this->path(path, fLocalToDevice, aa, op); |
| } |
| ElementsBuilder& path(const SkPath& path, const SkMatrix& m, GrAA aa, SkClipOp op) { |
| fElements->push_back({GrShape(path), m, op, aa}); |
| return *this; |
| } |
| |
| // Finish and return the original test case builder |
| TestCaseBuilder& finishElements() { |
| return *fBuilder; |
| } |
| |
| private: |
| friend class TestCaseBuilder; |
| |
| ElementsBuilder(TestCaseBuilder* builder, std::vector<ClipStack::Element>* elements) |
| : fBuilder(builder) |
| , fElements(elements) {} |
| |
| SkMatrix fLocalToDevice = SkMatrix::I(); |
| GrAA fAA = GrAA::kNo; |
| SkClipOp fOp = SkClipOp::kIntersect; |
| |
| TestCaseBuilder* fBuilder; |
| std::vector<ClipStack::Element>* fElements; |
| }; |
| |
| class TestCaseBuilder { |
| public: |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| ElementsBuilder actual() { return ElementsBuilder(this, &fActualElements); } |
| ElementsBuilder expect() { return ElementsBuilder(this, &fExpectedElements); } |
| |
| TestCaseBuilder& expectActual() { |
| fExpectedElements = fActualElements; |
| return *this; |
| } |
| |
| TestCaseBuilder& state(ClipStack::ClipState state) { |
| fExpectedState = state; |
| return *this; |
| } |
| |
| TestCase finishTest() { |
| TestCase test(fName, fDeviceBounds, fExpectedState, |
| std::move(fActualElements), std::move(fExpectedElements)); |
| |
| fExpectedState = ClipStack::ClipState::kWideOpen; |
| return test; |
| } |
| |
| private: |
| friend class TestCase; |
| |
| explicit TestCaseBuilder(const char* name, const SkIRect& deviceBounds) |
| : fName(name) |
| , fDeviceBounds(deviceBounds) |
| , fExpectedState(ClipStack::ClipState::kWideOpen) {} |
| |
| SkString fName; |
| SkIRect fDeviceBounds; |
| ClipStack::ClipState fExpectedState; |
| |
| std::vector<ClipStack::Element> fActualElements; |
| std::vector<ClipStack::Element> fExpectedElements; |
| }; |
| |
| TestCaseBuilder TestCase::Build(const char* name, const SkIRect& deviceBounds) { |
| return TestCaseBuilder(name, deviceBounds); |
| } |
| |
| SkString TestCase::getTestName(const std::vector<int>& order, SavePolicy policy) const { |
| SkString name = fName; |
| |
| SkString policyName; |
| switch(policy) { |
| case SavePolicy::kNever: |
| policyName = "never"; |
| break; |
| case SavePolicy::kAtStart: |
| policyName = "start"; |
| break; |
| case SavePolicy::kAtEnd: |
| policyName = "end"; |
| break; |
| case SavePolicy::kBetweenEveryOp: |
| policyName = "between"; |
| break; |
| } |
| |
| name.appendf("(save %s, order [", policyName.c_str()); |
| for (size_t i = 0; i < order.size(); ++i) { |
| if (i > 0) { |
| name.append(","); |
| } |
| name.appendf("%d", order[i]); |
| } |
| name.append("])"); |
| return name; |
| } |
| |
| std::pair<SkIRect, bool> TestCase::getOptimalBounds() const { |
| if (fExpectedState == ClipStack::ClipState::kEmpty) { |
| return {SkIRect::MakeEmpty(), true}; |
| } |
| |
| bool expectOptimal = true; |
| SkRegion region(fDeviceBounds); |
| for (const ClipStack::Element& e : fExpectedElements) { |
| bool intersect = (e.fOp == SkClipOp::kIntersect && !e.fShape.inverted()) || |
| (e.fOp == SkClipOp::kDifference && e.fShape.inverted()); |
| |
| SkIRect elementBounds; |
| SkRegion::Op op; |
| if (intersect) { |
| op = SkRegion::kIntersect_Op; |
| expectOptimal &= e.fLocalToDevice.isIdentity(); |
| elementBounds = GrClip::GetPixelIBounds(e.fLocalToDevice.mapRect(e.fShape.bounds()), |
| e.fAA, GrClip::BoundsType::kExterior); |
| } else { |
| op = SkRegion::kDifference_Op; |
| expectOptimal = false; |
| if (e.fShape.isRect() && e.fLocalToDevice.isIdentity()) { |
| elementBounds = GrClip::GetPixelIBounds(e.fShape.rect(), e.fAA, |
| GrClip::BoundsType::kInterior); |
| } else if (e.fShape.isRRect() && e.fLocalToDevice.isIdentity()) { |
| elementBounds = GrClip::GetPixelIBounds(SkRRectPriv::InnerBounds(e.fShape.rrect()), |
| e.fAA, GrClip::BoundsType::kInterior); |
| } else { |
| elementBounds = SkIRect::MakeEmpty(); |
| } |
| } |
| |
| region.op(SkRegion(elementBounds), op); |
| } |
| return {region.getBounds(), expectOptimal}; |
| } |
| |
| static bool compare_elements(const skgpu::v1::ClipStack::Element& a, |
| const skgpu::v1::ClipStack::Element& b) { |
| if (a.fAA != b.fAA || a.fOp != b.fOp || a.fLocalToDevice != b.fLocalToDevice || |
| a.fShape.type() != b.fShape.type()) { |
| return false; |
| } |
| switch(a.fShape.type()) { |
| case GrShape::Type::kRect: |
| return a.fShape.rect() == b.fShape.rect(); |
| case GrShape::Type::kRRect: |
| return a.fShape.rrect() == b.fShape.rrect(); |
| case GrShape::Type::kPath: |
| // A path's points are never transformed, the only modification is fill type which does |
| // not change the generation ID. For convex polygons, we check == so that more complex |
| // test cases can be evaluated. |
| return a.fShape.path().getGenerationID() == b.fShape.path().getGenerationID() || |
| (a.fShape.convex() && |
| a.fShape.segmentMask() == SkPathSegmentMask::kLine_SkPathSegmentMask && |
| a.fShape.path() == b.fShape.path()); |
| default: |
| SkDEBUGFAIL("Shape type not handled by test case yet."); |
| return false; |
| } |
| } |
| |
| void TestCase::run(const std::vector<int>& order, |
| SavePolicy policy, |
| skiatest::Reporter* reporter) const { |
| SkASSERT(fElements.size() == order.size()); |
| |
| SkMatrixProvider matrixProvider(SkMatrix::I()); |
| ClipStack cs(fDeviceBounds, &matrixProvider, false); |
| |
| if (policy == SavePolicy::kAtStart) { |
| cs.save(); |
| } |
| |
| for (int i : order) { |
| if (policy == SavePolicy::kBetweenEveryOp) { |
| cs.save(); |
| } |
| const ClipStack::Element& e = fElements[i]; |
| switch(e.fShape.type()) { |
| case GrShape::Type::kRect: |
| cs.clipRect(e.fLocalToDevice, e.fShape.rect(), e.fAA, e.fOp); |
| break; |
| case GrShape::Type::kRRect: |
| cs.clipRRect(e.fLocalToDevice, e.fShape.rrect(), e.fAA, e.fOp); |
| break; |
| case GrShape::Type::kPath: |
| cs.clipPath(e.fLocalToDevice, e.fShape.path(), e.fAA, e.fOp); |
| break; |
| default: |
| SkDEBUGFAIL("Shape type not handled by test case yet."); |
| } |
| } |
| |
| if (policy == SavePolicy::kAtEnd) { |
| cs.save(); |
| } |
| |
| // Now validate |
| SkString name = this->getTestName(order, policy); |
| REPORTER_ASSERT(reporter, cs.clipState() == fExpectedState, |
| "%s, clip state expected %d, actual %d", |
| name.c_str(), (int) fExpectedState, (int) cs.clipState()); |
| SkIRect actualBounds = cs.getConservativeBounds(); |
| SkIRect optimalBounds; |
| bool expectOptimal; |
| std::tie(optimalBounds, expectOptimal) = this->getOptimalBounds(); |
| |
| if (expectOptimal) { |
| REPORTER_ASSERT(reporter, actualBounds == optimalBounds, |
| "%s, bounds expected [%d %d %d %d], actual [%d %d %d %d]", |
| name.c_str(), optimalBounds.fLeft, optimalBounds.fTop, |
| optimalBounds.fRight, optimalBounds.fBottom, |
| actualBounds.fLeft, actualBounds.fTop, |
| actualBounds.fRight, actualBounds.fBottom); |
| } else { |
| REPORTER_ASSERT(reporter, actualBounds.contains(optimalBounds), |
| "%s, bounds are not conservative, optimal [%d %d %d %d], actual [%d %d %d %d]", |
| name.c_str(), optimalBounds.fLeft, optimalBounds.fTop, |
| optimalBounds.fRight, optimalBounds.fBottom, |
| actualBounds.fLeft, actualBounds.fTop, |
| actualBounds.fRight, actualBounds.fBottom); |
| } |
| |
| size_t matchedElements = 0; |
| for (const ClipStack::Element& a : cs) { |
| bool found = false; |
| for (const ClipStack::Element& e : fExpectedElements) { |
| if (compare_elements(a, e)) { |
| // shouldn't match multiple expected elements or it's a bad test case |
| SkASSERT(!found); |
| found = true; |
| } |
| } |
| |
| REPORTER_ASSERT(reporter, found, |
| "%s, unexpected clip element in stack: shape %d, aa %d, op %d", |
| name.c_str(), (int) a.fShape.type(), (int) a.fAA, (int) a.fOp); |
| matchedElements += found ? 1 : 0; |
| } |
| REPORTER_ASSERT(reporter, matchedElements == fExpectedElements.size(), |
| "%s, did not match all expected elements: expected %zu but matched only %zu", |
| name.c_str(), fExpectedElements.size(), matchedElements); |
| |
| // Validate restoration behavior |
| if (policy == SavePolicy::kAtEnd) { |
| ClipStack::ClipState oldState = cs.clipState(); |
| cs.restore(); |
| REPORTER_ASSERT(reporter, cs.clipState() == oldState, |
| "%s, restoring an empty save record should not change clip state: " |
| "expected %d but got %d", |
| name.c_str(), (int) oldState, (int) cs.clipState()); |
| } else if (policy != SavePolicy::kNever) { |
| int restoreCount = policy == SavePolicy::kAtStart ? 1 : (int) order.size(); |
| for (int i = 0; i < restoreCount; ++i) { |
| cs.restore(); |
| } |
| // Should be wide open if everything is restored to base state |
| REPORTER_ASSERT(reporter, cs.clipState() == ClipStack::ClipState::kWideOpen, |
| "%s, restore should make stack become wide-open, not %d", |
| name.c_str(), (int) cs.clipState()); |
| } |
| } |
| |
| // All clip operations are commutative so applying actual elements in every possible order should |
| // always produce the same set of expected elements. |
| static void run_test_case(skiatest::Reporter* r, const TestCase& test) { |
| int n = (int) test.initialElements().size(); |
| std::vector<int> order(n); |
| std::vector<int> stack(n); |
| |
| // Initial order sequence and zeroed stack |
| for (int i = 0; i < n; ++i) { |
| order[i] = i; |
| stack[i] = 0; |
| } |
| |
| auto runTest = [&]() { |
| static const SavePolicy kPolicies[] = { SavePolicy::kNever, SavePolicy::kAtStart, |
| SavePolicy::kAtEnd, SavePolicy::kBetweenEveryOp }; |
| for (auto policy : kPolicies) { |
| test.run(order, policy, r); |
| } |
| }; |
| |
| // Heap's algorithm (non-recursive) to generate every permutation over the test case's elements |
| // https://en.wikipedia.org/wiki/Heap%27s_algorithm |
| runTest(); |
| |
| static constexpr int kMaxRuns = 720; // Don't run more than 6! configurations, even if n > 6 |
| int testRuns = 1; |
| |
| int i = 0; |
| while (i < n && testRuns < kMaxRuns) { |
| if (stack[i] < i) { |
| using std::swap; |
| if (i % 2 == 0) { |
| swap(order[0], order[i]); |
| } else { |
| swap(order[stack[i]], order[i]); |
| } |
| |
| runTest(); |
| stack[i]++; |
| i = 0; |
| testRuns++; |
| } else { |
| stack[i] = 0; |
| ++i; |
| } |
| } |
| } |
| |
| static SkPath make_octagon(const SkRect& r, SkScalar lr, SkScalar tb) { |
| SkPath p; |
| p.moveTo(r.fLeft + lr, r.fTop); |
| p.lineTo(r.fRight - lr, r.fTop); |
| p.lineTo(r.fRight, r.fTop + tb); |
| p.lineTo(r.fRight, r.fBottom - tb); |
| p.lineTo(r.fRight - lr, r.fBottom); |
| p.lineTo(r.fLeft + lr, r.fBottom); |
| p.lineTo(r.fLeft, r.fBottom - tb); |
| p.lineTo(r.fLeft, r.fTop + tb); |
| p.close(); |
| return p; |
| } |
| |
| static SkPath make_octagon(const SkRect& r) { |
| SkScalar lr = 0.3f * r.width(); |
| SkScalar tb = 0.3f * r.height(); |
| return make_octagon(r, lr, tb); |
| } |
| |
| static constexpr SkIRect kDeviceBounds = {0, 0, 100, 100}; |
| |
| class NoOp : public GrDrawOp { |
| public: |
| static NoOp* Get() { |
| static NoOp gNoOp; |
| return &gNoOp; |
| } |
| private: |
| DEFINE_OP_CLASS_ID |
| NoOp() : GrDrawOp(ClassID()) {} |
| const char* name() const override { return "NoOp"; } |
| GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*, GrClampType) override { |
| return GrProcessorSet::EmptySetAnalysis(); |
| } |
| void onPrePrepare(GrRecordingContext*, const GrSurfaceProxyView&, GrAppliedClip*, const |
| GrDstProxyView&, GrXferBarrierFlags, GrLoadOp) override {} |
| void onPrepare(GrOpFlushState*) override {} |
| void onExecute(GrOpFlushState*, const SkRect&) override {} |
| }; |
| |
| } // anonymous namespace |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // These tests use the TestCase infrastructure to define clip stacks and |
| // associated expectations. |
| |
| // Tests that the initialized state of the clip stack is wide-open |
| DEF_TEST(ClipStack_InitialState, r) { |
| run_test_case(r, TestCase::Build("initial-state", SkIRect::MakeWH(100, 100)).finishTest()); |
| } |
| |
| // Tests that intersection of rects combine to a single element when they have the same AA type, |
| // or are pixel-aligned. |
| DEF_TEST(ClipStack_RectRectAACombine, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect pixelAligned = {0, 0, 10, 10}; |
| SkRect fracRect1 = pixelAligned.makeOffset(5.3f, 3.7f); |
| SkRect fracRect2 = {fracRect1.fLeft + 0.75f * fracRect1.width(), |
| fracRect1.fTop + 0.75f * fracRect1.height(), |
| fracRect1.fRight, fracRect1.fBottom}; |
| |
| SkRect fracIntersect; |
| SkAssertResult(fracIntersect.intersect(fracRect1, fracRect2)); |
| SkRect alignedIntersect; |
| SkAssertResult(alignedIntersect.intersect(pixelAligned, fracRect1)); |
| |
| // Both AA combine to one element |
| run_test_case(r, TestCase::Build("aa", kDeviceBounds) |
| .actual().aa().intersect() |
| .rect(fracRect1).rect(fracRect2) |
| .finishElements() |
| .expect().aa().intersect().rect(fracIntersect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // Both non-AA combine to one element |
| run_test_case(r, TestCase::Build("nonaa", kDeviceBounds) |
| .actual().nonAA().intersect() |
| .rect(fracRect1).rect(fracRect2) |
| .finishElements() |
| .expect().nonAA().intersect().rect(fracIntersect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // Pixel-aligned AA and non-AA combine |
| run_test_case(r, TestCase::Build("aligned-aa+nonaa", kDeviceBounds) |
| .actual().intersect() |
| .aa().rect(pixelAligned).nonAA().rect(fracRect1) |
| .finishElements() |
| .expect().nonAA().intersect().rect(alignedIntersect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // AA and pixel-aligned non-AA combine |
| run_test_case(r, TestCase::Build("aa+aligned-nonaa", kDeviceBounds) |
| .actual().intersect() |
| .aa().rect(fracRect1).nonAA().rect(pixelAligned) |
| .finishElements() |
| .expect().aa().intersect().rect(alignedIntersect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // Other mixed AA modes do not combine |
| run_test_case(r, TestCase::Build("aa+nonaa", kDeviceBounds) |
| .actual().intersect() |
| .aa().rect(fracRect1).nonAA().rect(fracRect2) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that an intersection and a difference op do not combine, even if they would have if both |
| // were intersection ops. |
| DEF_TEST(ClipStack_DifferenceNoCombine, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect r1 = {15.f, 14.f, 23.22f, 58.2f}; |
| SkRect r2 = r1.makeOffset(5.f, 8.f); |
| SkASSERT(r1.intersects(r2)); |
| |
| run_test_case(r, TestCase::Build("no-combine", kDeviceBounds) |
| .actual().aa().intersect().rect(r1) |
| .difference().rect(r2) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that intersection of rects in the same coordinate space can still be combined, but do not |
| // when the spaces differ. |
| DEF_TEST(ClipStack_RectRectNonAxisAligned, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect pixelAligned = {0, 0, 10, 10}; |
| SkRect fracRect1 = pixelAligned.makeOffset(5.3f, 3.7f); |
| SkRect fracRect2 = {fracRect1.fLeft + 0.75f * fracRect1.width(), |
| fracRect1.fTop + 0.75f * fracRect1.height(), |
| fracRect1.fRight, fracRect1.fBottom}; |
| |
| SkRect fracIntersect; |
| SkAssertResult(fracIntersect.intersect(fracRect1, fracRect2)); |
| |
| SkMatrix lm = SkMatrix::RotateDeg(45.f); |
| |
| // Both AA combine |
| run_test_case(r, TestCase::Build("aa", kDeviceBounds) |
| .actual().aa().intersect().localToDevice(lm) |
| .rect(fracRect1).rect(fracRect2) |
| .finishElements() |
| .expect().aa().intersect().localToDevice(lm) |
| .rect(fracIntersect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Both non-AA combine |
| run_test_case(r, TestCase::Build("nonaa", kDeviceBounds) |
| .actual().nonAA().intersect().localToDevice(lm) |
| .rect(fracRect1).rect(fracRect2) |
| .finishElements() |
| .expect().nonAA().intersect().localToDevice(lm) |
| .rect(fracIntersect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Integer-aligned coordinates under a local matrix with mixed AA don't combine, though |
| run_test_case(r, TestCase::Build("local-aa", kDeviceBounds) |
| .actual().intersect().localToDevice(lm) |
| .aa().rect(pixelAligned).nonAA().rect(fracRect1) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that intersection of two round rects can simplify to a single round rect when they have |
| // the same AA type. |
| DEF_TEST(ClipStack_RRectRRectAACombine, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRRect r1 = SkRRect::MakeRectXY(SkRect::MakeWH(12, 12), 2.f, 2.f); |
| SkRRect r2 = r1.makeOffset(6.f, 6.f); |
| |
| SkRRect intersect = SkRRectPriv::ConservativeIntersect(r1, r2); |
| SkASSERT(!intersect.isEmpty()); |
| |
| // Both AA combine |
| run_test_case(r, TestCase::Build("aa", kDeviceBounds) |
| .actual().aa().intersect() |
| .rrect(r1).rrect(r2) |
| .finishElements() |
| .expect().aa().intersect().rrect(intersect).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Both non-AA combine |
| run_test_case(r, TestCase::Build("nonaa", kDeviceBounds) |
| .actual().nonAA().intersect() |
| .rrect(r1).rrect(r2) |
| .finishElements() |
| .expect().nonAA().intersect().rrect(intersect).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Mixed do not combine |
| run_test_case(r, TestCase::Build("aa+nonaa", kDeviceBounds) |
| .actual().intersect() |
| .aa().rrect(r1).nonAA().rrect(r2) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Same AA state can combine in the same local coordinate space |
| SkMatrix lm = SkMatrix::RotateDeg(45.f); |
| run_test_case(r, TestCase::Build("local-aa", kDeviceBounds) |
| .actual().aa().intersect().localToDevice(lm) |
| .rrect(r1).rrect(r2) |
| .finishElements() |
| .expect().aa().intersect().localToDevice(lm) |
| .rrect(intersect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("local-nonaa", kDeviceBounds) |
| .actual().nonAA().intersect().localToDevice(lm) |
| .rrect(r1).rrect(r2) |
| .finishElements() |
| .expect().nonAA().intersect().localToDevice(lm) |
| .rrect(intersect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that intersection of a round rect and rect can simplify to a new round rect or even a rect. |
| DEF_TEST(ClipStack_RectRRectCombine, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRRect rrect = SkRRect::MakeRectXY({0, 0, 10, 10}, 2.f, 2.f); |
| SkRect cutTop = {-10, -10, 10, 4}; |
| SkRect cutMid = {-10, 3, 10, 7}; |
| |
| // Rect + RRect becomes a round rect with some square corners |
| SkVector cutCorners[4] = {{2.f, 2.f}, {2.f, 2.f}, {0, 0}, {0, 0}}; |
| SkRRect cutRRect; |
| cutRRect.setRectRadii({0, 0, 10, 4}, cutCorners); |
| run_test_case(r, TestCase::Build("still-rrect", kDeviceBounds) |
| .actual().intersect().aa().rrect(rrect).rect(cutTop).finishElements() |
| .expect().intersect().aa().rrect(cutRRect).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Rect + RRect becomes a rect |
| SkRect cutRect = {0, 3, 10, 7}; |
| run_test_case(r, TestCase::Build("to-rect", kDeviceBounds) |
| .actual().intersect().aa().rrect(rrect).rect(cutMid).finishElements() |
| .expect().intersect().aa().rect(cutRect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // But they can only combine when the intersecting shape is representable as a [r]rect. |
| cutRect = {0, 0, 1.5f, 5.f}; |
| run_test_case(r, TestCase::Build("no-combine", kDeviceBounds) |
| .actual().intersect().aa().rrect(rrect).rect(cutRect).finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that a rect shape is actually pre-clipped to the device bounds |
| DEF_TEST(ClipStack_RectDeviceClip, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect crossesDeviceEdge = {20.f, kDeviceBounds.fTop - 13.2f, |
| kDeviceBounds.fRight + 15.5f, 30.f}; |
| SkRect insideDevice = {20.f, kDeviceBounds.fTop, kDeviceBounds.fRight, 30.f}; |
| |
| run_test_case(r, TestCase::Build("device-aa-rect", kDeviceBounds) |
| .actual().intersect().aa().rect(crossesDeviceEdge).finishElements() |
| .expect().intersect().aa().rect(insideDevice).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| run_test_case(r, TestCase::Build("device-nonaa-rect", kDeviceBounds) |
| .actual().intersect().nonAA().rect(crossesDeviceEdge).finishElements() |
| .expect().intersect().nonAA().rect(insideDevice).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| } |
| |
| // Tests that other shapes' bounds are contained by the device bounds, even if their shape is not. |
| DEF_TEST(ClipStack_ShapeDeviceBoundsClip, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect crossesDeviceEdge = {20.f, kDeviceBounds.fTop - 13.2f, |
| kDeviceBounds.fRight + 15.5f, 30.f}; |
| |
| // RRect |
| run_test_case(r, TestCase::Build("device-rrect", kDeviceBounds) |
| .actual().intersect().aa() |
| .rrect(SkRRect::MakeRectXY(crossesDeviceEdge, 4.f, 4.f)) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Path |
| run_test_case(r, TestCase::Build("device-path", kDeviceBounds) |
| .actual().intersect().aa() |
| .path(make_octagon(crossesDeviceEdge)) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that a simplifiable path turns into a simpler element type |
| DEF_TEST(ClipStack_PathSimplify, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| // Empty, point, and line paths -> empty |
| SkPath empty; |
| run_test_case(r, TestCase::Build("empty", kDeviceBounds) |
| .actual().path(empty).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| SkPath point; |
| point.moveTo({0.f, 0.f}); |
| run_test_case(r, TestCase::Build("point", kDeviceBounds) |
| .actual().path(point).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| SkPath line; |
| line.moveTo({0.f, 0.f}); |
| line.lineTo({10.f, 5.f}); |
| run_test_case(r, TestCase::Build("line", kDeviceBounds) |
| .actual().path(line).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| // Rect path -> rect element |
| SkRect rect = {0.f, 2.f, 10.f, 15.4f}; |
| SkPath rectPath; |
| rectPath.addRect(rect); |
| run_test_case(r, TestCase::Build("rect", kDeviceBounds) |
| .actual().path(rectPath).finishElements() |
| .expect().rect(rect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // Oval path -> rrect element |
| SkPath ovalPath; |
| ovalPath.addOval(rect); |
| run_test_case(r, TestCase::Build("oval", kDeviceBounds) |
| .actual().path(ovalPath).finishElements() |
| .expect().rrect(SkRRect::MakeOval(rect)).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // RRect path -> rrect element |
| SkRRect rrect = SkRRect::MakeRectXY(rect, 2.f, 2.f); |
| SkPath rrectPath; |
| rrectPath.addRRect(rrect); |
| run_test_case(r, TestCase::Build("rrect", kDeviceBounds) |
| .actual().path(rrectPath).finishElements() |
| .expect().rrect(rrect).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| } |
| |
| // Tests that repeated identical clip operations are idempotent |
| DEF_TEST(ClipStack_RepeatElement, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| // Same rect |
| SkRect rect = {5.3f, 62.f, 20.f, 85.f}; |
| run_test_case(r, TestCase::Build("same-rects", kDeviceBounds) |
| .actual().rect(rect).rect(rect).rect(rect).finishElements() |
| .expect().rect(rect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| SkMatrix lm; |
| lm.setRotate(30.f, rect.centerX(), rect.centerY()); |
| run_test_case(r, TestCase::Build("same-local-rects", kDeviceBounds) |
| .actual().localToDevice(lm).rect(rect).rect(rect).rect(rect) |
| .finishElements() |
| .expect().localToDevice(lm).rect(rect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Same rrect |
| SkRRect rrect = SkRRect::MakeRectXY(rect, 5.f, 2.5f); |
| run_test_case(r, TestCase::Build("same-rrects", kDeviceBounds) |
| .actual().rrect(rrect).rrect(rrect).rrect(rrect).finishElements() |
| .expect().rrect(rrect).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("same-local-rrects", kDeviceBounds) |
| .actual().localToDevice(lm).rrect(rrect).rrect(rrect).rrect(rrect) |
| .finishElements() |
| .expect().localToDevice(lm).rrect(rrect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Same convex path, by == |
| run_test_case(r, TestCase::Build("same-convex", kDeviceBounds) |
| .actual().path(make_octagon(rect)).path(make_octagon(rect)) |
| .finishElements() |
| .expect().path(make_octagon(rect)).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("same-local-convex", kDeviceBounds) |
| .actual().localToDevice(lm) |
| .path(make_octagon(rect)).path(make_octagon(rect)) |
| .finishElements() |
| .expect().localToDevice(lm).path(make_octagon(rect)) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Same complicated path by gen-id but not == |
| SkPath path; // an hour glass |
| path.moveTo({0.f, 0.f}); |
| path.lineTo({20.f, 20.f}); |
| path.lineTo({0.f, 20.f}); |
| path.lineTo({20.f, 0.f}); |
| path.close(); |
| |
| run_test_case(r, TestCase::Build("same-path", kDeviceBounds) |
| .actual().path(path).path(path).path(path).finishElements() |
| .expect().path(path).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("same-local-path", kDeviceBounds) |
| .actual().localToDevice(lm) |
| .path(path).path(path).path(path).finishElements() |
| .expect().localToDevice(lm).path(path) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that inverse-filled paths are canonicalized to a regular fill and a swapped clip op |
| DEF_TEST(ClipStack_InverseFilledPath, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect rect = {0.f, 0.f, 16.f, 17.f}; |
| SkPath rectPath; |
| rectPath.addRect(rect); |
| |
| SkPath inverseRectPath = rectPath; |
| inverseRectPath.toggleInverseFillType(); |
| |
| SkPath complexPath = make_octagon(rect); |
| SkPath inverseComplexPath = complexPath; |
| inverseComplexPath.toggleInverseFillType(); |
| |
| // Inverse filled rect + intersect -> diff rect |
| run_test_case(r, TestCase::Build("inverse-rect-intersect", kDeviceBounds) |
| .actual().aa().intersect().path(inverseRectPath).finishElements() |
| .expect().aa().difference().rect(rect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Inverse filled rect + difference -> int. rect |
| run_test_case(r, TestCase::Build("inverse-rect-difference", kDeviceBounds) |
| .actual().aa().difference().path(inverseRectPath).finishElements() |
| .expect().aa().intersect().rect(rect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // Inverse filled path + intersect -> diff path |
| run_test_case(r, TestCase::Build("inverse-path-intersect", kDeviceBounds) |
| .actual().aa().intersect().path(inverseComplexPath).finishElements() |
| .expect().aa().difference().path(complexPath).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Inverse filled path + difference -> int. path |
| run_test_case(r, TestCase::Build("inverse-path-difference", kDeviceBounds) |
| .actual().aa().difference().path(inverseComplexPath).finishElements() |
| .expect().aa().intersect().path(complexPath).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that clip operations that are offscreen either make the clip empty or stay wide open |
| DEF_TEST(ClipStack_Offscreen, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect offscreenRect = {kDeviceBounds.fRight + 10.f, kDeviceBounds.fTop + 20.f, |
| kDeviceBounds.fRight + 40.f, kDeviceBounds.fTop + 60.f}; |
| SkASSERT(!offscreenRect.intersects(SkRect::Make(kDeviceBounds))); |
| |
| SkRRect offscreenRRect = SkRRect::MakeRectXY(offscreenRect, 5.f, 5.f); |
| SkPath offscreenPath = make_octagon(offscreenRect); |
| |
| // Intersect -> empty |
| run_test_case(r, TestCase::Build("intersect-combo", kDeviceBounds) |
| .actual().aa().intersect() |
| .rect(offscreenRect) |
| .rrect(offscreenRRect) |
| .path(offscreenPath) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("intersect-rect", kDeviceBounds) |
| .actual().aa().intersect() |
| .rect(offscreenRect) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("intersect-rrect", kDeviceBounds) |
| .actual().aa().intersect() |
| .rrect(offscreenRRect) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("intersect-path", kDeviceBounds) |
| .actual().aa().intersect() |
| .path(offscreenPath) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| // Difference -> wide open |
| run_test_case(r, TestCase::Build("difference-combo", kDeviceBounds) |
| .actual().aa().difference() |
| .rect(offscreenRect) |
| .rrect(offscreenRRect) |
| .path(offscreenPath) |
| .finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("difference-rect", kDeviceBounds) |
| .actual().aa().difference() |
| .rect(offscreenRect) |
| .finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("difference-rrect", kDeviceBounds) |
| .actual().aa().difference() |
| .rrect(offscreenRRect) |
| .finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("difference-path", kDeviceBounds) |
| .actual().aa().difference() |
| .path(offscreenPath) |
| .finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| } |
| |
| // Tests that an empty shape updates the clip state directly without needing an element |
| DEF_TEST(ClipStack_EmptyShape, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| // Intersect -> empty |
| run_test_case(r, TestCase::Build("empty-intersect", kDeviceBounds) |
| .actual().intersect().rect(SkRect::MakeEmpty()).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| // Difference -> no-op |
| run_test_case(r, TestCase::Build("empty-difference", kDeviceBounds) |
| .actual().difference().rect(SkRect::MakeEmpty()).finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| |
| SkRRect rrect = SkRRect::MakeRectXY({4.f, 10.f, 16.f, 32.f}, 2.f, 2.f); |
| run_test_case(r, TestCase::Build("noop-difference", kDeviceBounds) |
| .actual().difference().rrect(rrect).rect(SkRect::MakeEmpty()) |
| .finishElements() |
| .expect().difference().rrect(rrect).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that sufficiently large difference operations can shrink the conservative bounds |
| DEF_TEST(ClipStack_DifferenceBounds, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect rightSide = {50.f, -10.f, 2.f * kDeviceBounds.fRight, kDeviceBounds.fBottom + 10.f}; |
| SkRect clipped = rightSide; |
| SkAssertResult(clipped.intersect(SkRect::Make(kDeviceBounds))); |
| |
| run_test_case(r, TestCase::Build("difference-cut", kDeviceBounds) |
| .actual().nonAA().difference().rect(rightSide).finishElements() |
| .expect().nonAA().difference().rect(clipped).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that intersections can combine even if there's a difference operation in the middle |
| DEF_TEST(ClipStack_NoDifferenceInterference, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect intR1 = {0.f, 0.f, 30.f, 30.f}; |
| SkRect intR2 = {15.f, 15.f, 45.f, 45.f}; |
| SkRect intCombo = {15.f, 15.f, 30.f, 30.f}; |
| SkRect diff = {20.f, 6.f, 50.f, 50.f}; |
| |
| run_test_case(r, TestCase::Build("cross-diff-combine", kDeviceBounds) |
| .actual().rect(intR1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(diff, GrAA::kYes, SkClipOp::kDifference) |
| .rect(intR2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(intCombo, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(diff, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that multiple path operations are all recorded, but not otherwise consolidated |
| DEF_TEST(ClipStack_MultiplePaths, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| // Chosen to be greater than the number of inline-allocated elements and save records of the |
| // ClipStack so that we test heap allocation as well. |
| static constexpr int kNumOps = 16; |
| |
| auto b = TestCase::Build("many-paths-difference", kDeviceBounds); |
| SkRect d = {0.f, 0.f, 12.f, 12.f}; |
| for (int i = 0; i < kNumOps; ++i) { |
| b.actual().path(make_octagon(d), GrAA::kNo, SkClipOp::kDifference); |
| |
| d.offset(15.f, 0.f); |
| if (d.fRight > kDeviceBounds.fRight) { |
| d.fLeft = 0.f; |
| d.fRight = 12.f; |
| d.offset(0.f, 15.f); |
| } |
| } |
| |
| run_test_case(r, b.expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| b = TestCase::Build("many-paths-intersect", kDeviceBounds); |
| d = {0.f, 0.f, 12.f, 12.f}; |
| for (int i = 0; i < kNumOps; ++i) { |
| b.actual().path(make_octagon(d), GrAA::kYes, SkClipOp::kIntersect); |
| d.offset(0.01f, 0.01f); |
| } |
| |
| run_test_case(r, b.expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that a single rect is treated as kDeviceRect state when it's axis-aligned and intersect. |
| DEF_TEST(ClipStack_DeviceRect, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| // Axis-aligned + intersect -> kDeviceRect |
| SkRect rect = {0, 0, 20, 20}; |
| run_test_case(r, TestCase::Build("device-rect", kDeviceBounds) |
| .actual().intersect().aa().rect(rect).finishElements() |
| .expectActual() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // Not axis-aligned -> kComplex |
| SkMatrix lm = SkMatrix::RotateDeg(15.f); |
| run_test_case(r, TestCase::Build("unaligned-rect", kDeviceBounds) |
| .actual().localToDevice(lm).intersect().aa().rect(rect) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Not intersect -> kComplex |
| run_test_case(r, TestCase::Build("diff-rect", kDeviceBounds) |
| .actual().difference().aa().rect(rect).finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that a single rrect is treated as kDeviceRRect state when it's axis-aligned and intersect. |
| DEF_TEST(ClipStack_DeviceRRect, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| // Axis-aligned + intersect -> kDeviceRRect |
| SkRect rect = {0, 0, 20, 20}; |
| SkRRect rrect = SkRRect::MakeRectXY(rect, 5.f, 5.f); |
| run_test_case(r, TestCase::Build("device-rrect", kDeviceBounds) |
| .actual().intersect().aa().rrect(rrect).finishElements() |
| .expectActual() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Not axis-aligned -> kComplex |
| SkMatrix lm = SkMatrix::RotateDeg(15.f); |
| run_test_case(r, TestCase::Build("unaligned-rrect", kDeviceBounds) |
| .actual().localToDevice(lm).intersect().aa().rrect(rrect) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Not intersect -> kComplex |
| run_test_case(r, TestCase::Build("diff-rrect", kDeviceBounds) |
| .actual().difference().aa().rrect(rrect).finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that scale+translate matrices are pre-applied to rects and rrects, which also then allows |
| // elements with different scale+translate matrices to be consolidated as if they were in the same |
| // coordinate space. |
| DEF_TEST(ClipStack_ScaleTranslate, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkMatrix lm = SkMatrix::Scale(2.f, 4.f); |
| lm.postTranslate(15.5f, 14.3f); |
| SkASSERT(lm.preservesAxisAlignment() && lm.isScaleTranslate()); |
| |
| // Rect -> matrix is applied up front |
| SkRect rect = {0.f, 0.f, 10.f, 10.f}; |
| run_test_case(r, TestCase::Build("st+rect", kDeviceBounds) |
| .actual().rect(rect, lm, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(lm.mapRect(rect), GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // RRect -> matrix is applied up front |
| SkRRect localRRect = SkRRect::MakeRectXY(rect, 2.f, 2.f); |
| SkRRect deviceRRect; |
| SkAssertResult(localRRect.transform(lm, &deviceRRect)); |
| run_test_case(r, TestCase::Build("st+rrect", kDeviceBounds) |
| .actual().rrect(localRRect, lm, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rrect(deviceRRect, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Path -> matrix is NOT applied |
| run_test_case(r, TestCase::Build("st+path", kDeviceBounds) |
| .actual().intersect().localToDevice(lm).path(make_octagon(rect)) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that rect-stays-rect matrices that are not scale+translate matrices are pre-applied. |
| DEF_TEST(ClipStack_PreserveAxisAlignment, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkMatrix lm = SkMatrix::RotateDeg(90.f); |
| lm.postTranslate(15.5f, 14.3f); |
| SkASSERT(lm.preservesAxisAlignment() && !lm.isScaleTranslate()); |
| |
| // Rect -> matrix is applied up front |
| SkRect rect = {0.f, 0.f, 10.f, 10.f}; |
| run_test_case(r, TestCase::Build("r90+rect", kDeviceBounds) |
| .actual().rect(rect, lm, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(lm.mapRect(rect), GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // RRect -> matrix is applied up front |
| SkRRect localRRect = SkRRect::MakeRectXY(rect, 2.f, 2.f); |
| SkRRect deviceRRect; |
| SkAssertResult(localRRect.transform(lm, &deviceRRect)); |
| run_test_case(r, TestCase::Build("r90+rrect", kDeviceBounds) |
| .actual().rrect(localRRect, lm, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rrect(deviceRRect, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Path -> matrix is NOT applied |
| run_test_case(r, TestCase::Build("r90+path", kDeviceBounds) |
| .actual().intersect().localToDevice(lm).path(make_octagon(rect)) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that a convex path element can contain a rect or round rect, allowing the stack to be |
| // simplified |
| DEF_TEST(ClipStack_ConvexPathContains, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect rect = {15.f, 15.f, 30.f, 30.f}; |
| SkRRect rrect = SkRRect::MakeRectXY(rect, 5.f, 5.f); |
| SkPath bigPath = make_octagon(rect.makeOutset(10.f, 10.f), 5.f, 5.f); |
| |
| // Intersect -> path element isn't kept |
| run_test_case(r, TestCase::Build("convex+rect-intersect", kDeviceBounds) |
| .actual().aa().intersect().rect(rect).path(bigPath).finishElements() |
| .expect().aa().intersect().rect(rect).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("convex+rrect-intersect", kDeviceBounds) |
| .actual().aa().intersect().rrect(rrect).path(bigPath).finishElements() |
| .expect().aa().intersect().rrect(rrect).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // Difference -> path element is the only one left |
| run_test_case(r, TestCase::Build("convex+rect-difference", kDeviceBounds) |
| .actual().aa().difference().rect(rect).path(bigPath).finishElements() |
| .expect().aa().difference().path(bigPath).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("convex+rrect-difference", kDeviceBounds) |
| .actual().aa().difference().rrect(rrect).path(bigPath) |
| .finishElements() |
| .expect().aa().difference().path(bigPath).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Intersect small shape + difference big path -> empty |
| run_test_case(r, TestCase::Build("convex-diff+rect-int", kDeviceBounds) |
| .actual().aa().intersect().rect(rect) |
| .difference().path(bigPath).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("convex-diff+rrect-int", kDeviceBounds) |
| .actual().aa().intersect().rrect(rrect) |
| .difference().path(bigPath).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| // Diff small shape + intersect big path -> both |
| run_test_case(r, TestCase::Build("convex-int+rect-diff", kDeviceBounds) |
| .actual().aa().intersect().path(bigPath).difference().rect(rect) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("convex-int+rrect-diff", kDeviceBounds) |
| .actual().aa().intersect().path(bigPath).difference().rrect(rrect) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that rects/rrects in different coordinate spaces can be consolidated when one is fully |
| // contained by the other. |
| DEF_TEST(ClipStack_NonAxisAlignedContains, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkMatrix lm1 = SkMatrix::RotateDeg(45.f); |
| SkRect bigR = {-20.f, -20.f, 20.f, 20.f}; |
| SkRRect bigRR = SkRRect::MakeRectXY(bigR, 1.f, 1.f); |
| |
| SkMatrix lm2 = SkMatrix::RotateDeg(-45.f); |
| SkRect smR = {-10.f, -10.f, 10.f, 10.f}; |
| SkRRect smRR = SkRRect::MakeRectXY(smR, 1.f, 1.f); |
| |
| // I+I should select the smaller 2nd shape (r2 or rr2) |
| run_test_case(r, TestCase::Build("rect-rect-ii", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(smR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrect-rrect-ii", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rrect(smRR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rect-rrect-ii", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rrect(smRR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrect-rect-ii", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(smR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // D+D should select the larger shape (r1 or rr1) |
| run_test_case(r, TestCase::Build("rect-rect-dd", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expect().rect(bigR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrect-rrect-dd", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expect().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rect-rrect-dd", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expect().rect(bigR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrect-rect-dd", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expect().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // D(1)+I(2) should result in empty |
| run_test_case(r, TestCase::Build("rectD-rectI", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrectD-rrectI", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rectD-rrectI", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrectD-rectI", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kDifference) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| // I(1)+D(2) should result in both shapes |
| run_test_case(r, TestCase::Build("rectI+rectD", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrectI+rrectD", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrectI+rectD", kDeviceBounds) |
| .actual().rrect(bigRR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(smR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rectI+rrectD", kDeviceBounds) |
| .actual().rect(bigR, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rrect(smRR, lm2, GrAA::kYes, SkClipOp::kDifference) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that shapes with mixed AA state that contain each other can still be consolidated, |
| // unless they are too close to the edge and non-AA snapping can't be predicted |
| DEF_TEST(ClipStack_MixedAAContains, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkMatrix lm1 = SkMatrix::RotateDeg(45.f); |
| SkRect r1 = {-20.f, -20.f, 20.f, 20.f}; |
| |
| SkMatrix lm2 = SkMatrix::RotateDeg(-45.f); |
| SkRect r2Safe = {-10.f, -10.f, 10.f, 10.f}; |
| SkRect r2Unsafe = {-19.5f, -19.5f, 19.5f, 19.5f}; |
| |
| // Non-AA sufficiently inside AA element can discard the outer AA element |
| run_test_case(r, TestCase::Build("mixed-outeraa-combine", kDeviceBounds) |
| .actual().rect(r1, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(r2Safe, lm2, GrAA::kNo, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(r2Safe, lm2, GrAA::kNo, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| // Vice versa |
| run_test_case(r, TestCase::Build("mixed-inneraa-combine", kDeviceBounds) |
| .actual().rect(r1, lm1, GrAA::kNo, SkClipOp::kIntersect) |
| .rect(r2Safe, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expect().rect(r2Safe, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // Non-AA too close to AA edges keeps both |
| run_test_case(r, TestCase::Build("mixed-outeraa-nocombine", kDeviceBounds) |
| .actual().rect(r1, lm1, GrAA::kYes, SkClipOp::kIntersect) |
| .rect(r2Unsafe, lm2, GrAA::kNo, SkClipOp::kIntersect) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("mixed-inneraa-nocombine", kDeviceBounds) |
| .actual().rect(r1, lm1, GrAA::kNo, SkClipOp::kIntersect) |
| .rect(r2Unsafe, lm2, GrAA::kYes, SkClipOp::kIntersect) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| // Tests that a shape that contains the device bounds updates the clip state directly |
| DEF_TEST(ClipStack_ShapeContainsDevice, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect rect = SkRect::Make(kDeviceBounds).makeOutset(10.f, 10.f); |
| SkRRect rrect = SkRRect::MakeRectXY(rect, 10.f, 10.f); |
| SkPath convex = make_octagon(rect, 10.f, 10.f); |
| |
| // Intersect -> no-op |
| run_test_case(r, TestCase::Build("rect-intersect", kDeviceBounds) |
| .actual().intersect().rect(rect).finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrect-intersect", kDeviceBounds) |
| .actual().intersect().rrect(rrect).finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("convex-intersect", kDeviceBounds) |
| .actual().intersect().path(convex).finishElements() |
| .state(ClipState::kWideOpen) |
| .finishTest()); |
| |
| // Difference -> empty |
| run_test_case(r, TestCase::Build("rect-difference", kDeviceBounds) |
| .actual().difference().rect(rect).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("rrect-difference", kDeviceBounds) |
| .actual().difference().rrect(rrect).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| run_test_case(r, TestCase::Build("convex-difference", kDeviceBounds) |
| .actual().difference().path(convex).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| } |
| |
| // Tests that shapes that do not overlap make for an empty clip (when intersecting), pick just the |
| // intersecting op (when mixed), or are all kept (when diff'ing). |
| DEF_TEST(ClipStack_DisjointShapes, r) { |
| using ClipState = skgpu::v1::ClipStack::ClipState; |
| |
| SkRect rt = {10.f, 10.f, 20.f, 20.f}; |
| SkRRect rr = SkRRect::MakeOval(rt.makeOffset({20.f, 0.f})); |
| SkPath p = make_octagon(rt.makeOffset({0.f, 20.f})); |
| |
| // I+I |
| run_test_case(r, TestCase::Build("iii", kDeviceBounds) |
| .actual().aa().intersect().rect(rt).rrect(rr).path(p).finishElements() |
| .state(ClipState::kEmpty) |
| .finishTest()); |
| |
| // D+D |
| run_test_case(r, TestCase::Build("ddd", kDeviceBounds) |
| .actual().nonAA().difference().rect(rt).rrect(rr).path(p) |
| .finishElements() |
| .expectActual() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| |
| // I+D from rect |
| run_test_case(r, TestCase::Build("idd", kDeviceBounds) |
| .actual().aa().intersect().rect(rt) |
| .nonAA().difference().rrect(rr).path(p) |
| .finishElements() |
| .expect().aa().intersect().rect(rt).finishElements() |
| .state(ClipState::kDeviceRect) |
| .finishTest()); |
| |
| // I+D from rrect |
| run_test_case(r, TestCase::Build("did", kDeviceBounds) |
| .actual().aa().intersect().rrect(rr) |
| .nonAA().difference().rect(rt).path(p) |
| .finishElements() |
| .expect().aa().intersect().rrect(rr).finishElements() |
| .state(ClipState::kDeviceRRect) |
| .finishTest()); |
| |
| // I+D from path |
| run_test_case(r, TestCase::Build("ddi", kDeviceBounds) |
| .actual().aa().intersect().path(p) |
| .nonAA().difference().rect(rt).rrect(rr) |
| .finishElements() |
| .expect().aa().intersect().path(p).finishElements() |
| .state(ClipState::kComplex) |
| .finishTest()); |
| } |
| |
| DEF_TEST(ClipStack_ComplexClip, reporter) { |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| static constexpr float kN = 10.f; |
| static constexpr float kR = kN / 3.f; |
| |
| // 4 rectangles that overlap by kN x 2kN (horiz), 2kN x kN (vert), or kN x kN (diagonal) |
| static const SkRect kTL = {0.f, 0.f, 2.f * kN, 2.f * kN}; |
| static const SkRect kTR = {kN, 0.f, 3.f * kN, 2.f * kN}; |
| static const SkRect kBL = {0.f, kN, 2.f * kN, 3.f * kN}; |
| static const SkRect kBR = {kN, kN, 3.f * kN, 3.f * kN}; |
| |
| enum ShapeType { kRect, kRRect, kConvex }; |
| |
| SkRect rects[] = { kTL, kTR, kBL, kBR }; |
| for (ShapeType type : { kRect, kRRect, kConvex }) { |
| for (int opBits = 6; opBits < 16; ++opBits) { |
| SkString name; |
| name.appendf("complex-%d-%d", (int) type, opBits); |
| |
| SkRect expectedRectIntersection = SkRect::Make(kDeviceBounds); |
| SkRRect expectedRRectIntersection = SkRRect::MakeRect(expectedRectIntersection); |
| |
| auto b = TestCase::Build(name.c_str(), kDeviceBounds); |
| for (int i = 0; i < 4; ++i) { |
| SkClipOp op = (opBits & (1 << i)) ? SkClipOp::kIntersect : SkClipOp::kDifference; |
| switch(type) { |
| case kRect: { |
| SkRect r = rects[i]; |
| if (op == SkClipOp::kDifference) { |
| // Shrink the rect for difference ops, otherwise in the rect testcase |
| // any difference op would remove the intersection of the other ops |
| // given how the rects are defined, and that's just not interesting. |
| r.inset(kR, kR); |
| } |
| b.actual().rect(r, GrAA::kYes, op); |
| if (op == SkClipOp::kIntersect) { |
| SkAssertResult(expectedRectIntersection.intersect(r)); |
| } else { |
| b.expect().rect(r, GrAA::kYes, SkClipOp::kDifference); |
| } |
| break; } |
| case kRRect: { |
| SkRRect rrect = SkRRect::MakeRectXY(rects[i], kR, kR); |
| b.actual().rrect(rrect, GrAA::kYes, op); |
| if (op == SkClipOp::kIntersect) { |
| expectedRRectIntersection = SkRRectPriv::ConservativeIntersect( |
| expectedRRectIntersection, rrect); |
| SkASSERT(!expectedRRectIntersection.isEmpty()); |
| } else { |
| b.expect().rrect(rrect, GrAA::kYes, SkClipOp::kDifference); |
| } |
| break; } |
| case kConvex: |
| b.actual().path(make_octagon(rects[i], kR, kR), GrAA::kYes, op); |
| // NOTE: We don't set any expectations here, since convex just calls |
| // expectActual() at the end. |
| break; |
| } |
| } |
| |
| // The expectations differ depending on the shape type |
| ClipStack::ClipState state = ClipStack::ClipState::kComplex; |
| if (type == kConvex) { |
| // The simplest case is when the paths cannot be combined together, so we expect |
| // the actual elements to be unmodified (both intersect and difference). |
| b.expectActual(); |
| } else if (opBits) { |
| // All intersection ops were pre-computed into expectedR[R]ectIntersection |
| // - difference ops already added in the for loop |
| if (type == kRect) { |
| SkASSERT(expectedRectIntersection != SkRect::Make(kDeviceBounds) && |
| !expectedRectIntersection.isEmpty()); |
| b.expect().rect(expectedRectIntersection, GrAA::kYes, SkClipOp::kIntersect); |
| if (opBits == 0xf) { |
| state = ClipStack::ClipState::kDeviceRect; |
| } |
| } else { |
| SkASSERT(expectedRRectIntersection != |
| SkRRect::MakeRect(SkRect::Make(kDeviceBounds)) && |
| !expectedRRectIntersection.isEmpty()); |
| b.expect().rrect(expectedRRectIntersection, GrAA::kYes, SkClipOp::kIntersect); |
| if (opBits == 0xf) { |
| state = ClipStack::ClipState::kDeviceRRect; |
| } |
| } |
| } |
| |
| run_test_case(reporter, b.state(state).finishTest()); |
| } |
| } |
| } |
| |
| // /////////////////////////////////////////////////////////////////////////////// |
| // // These tests do not use the TestCase infrastructure and manipulate a |
| // // ClipStack directly. |
| |
| // Tests that replaceClip() works as expected across save/restores |
| DEF_TEST(ClipStack_ReplaceClip, r) { |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| ClipStack cs(kDeviceBounds, nullptr, false); |
| |
| SkRRect rrect = SkRRect::MakeRectXY({15.f, 12.25f, 40.3f, 23.5f}, 4.f, 6.f); |
| cs.clipRRect(SkMatrix::I(), rrect, GrAA::kYes, SkClipOp::kIntersect); |
| |
| SkIRect replace = {50, 25, 75, 40}; // Is disjoint from the rrect element |
| cs.save(); |
| cs.replaceClip(replace); |
| |
| REPORTER_ASSERT(r, cs.clipState() == ClipStack::ClipState::kDeviceRect, |
| "Clip did not become a device rect"); |
| REPORTER_ASSERT(r, cs.getConservativeBounds() == replace, "Unexpected replaced clip bounds"); |
| const ClipStack::Element& replaceElement = *cs.begin(); |
| REPORTER_ASSERT(r, replaceElement.fShape.rect() == SkRect::Make(replace) && |
| replaceElement.fAA == GrAA::kNo && |
| replaceElement.fOp == SkClipOp::kIntersect && |
| replaceElement.fLocalToDevice == SkMatrix::I(), |
| "Unexpected replace element state"); |
| |
| // Restore should undo the replaced clip and bring back the rrect |
| cs.restore(); |
| REPORTER_ASSERT(r, cs.clipState() == ClipStack::ClipState::kDeviceRRect, |
| "Unexpected state after restore, not kDeviceRRect"); |
| const ClipStack::Element& rrectElem = *cs.begin(); |
| REPORTER_ASSERT(r, rrectElem.fShape.rrect() == rrect && |
| rrectElem.fAA == GrAA::kYes && |
| rrectElem.fOp == SkClipOp::kIntersect && |
| rrectElem.fLocalToDevice == SkMatrix::I(), |
| "RRect element state not restored properly after replace clip undone"); |
| } |
| |
| // Try to overflow the number of allowed window rects (see skbug.com/10989) |
| DEF_TEST(ClipStack_DiffRects, r) { |
| using ClipStack = skgpu::v1::ClipStack; |
| using SurfaceDrawContext = skgpu::v1::SurfaceDrawContext; |
| |
| GrMockOptions options; |
| options.fMaxWindowRectangles = 8; |
| |
| SkMatrixProvider matrixProvider = SkMatrix::I(); |
| sk_sp<GrDirectContext> context = GrDirectContext::MakeMock(&options); |
| std::unique_ptr<SurfaceDrawContext> sdc = SurfaceDrawContext::Make( |
| context.get(), GrColorType::kRGBA_8888, SkColorSpace::MakeSRGB(), |
| SkBackingFit::kExact, kDeviceBounds.size(), SkSurfaceProps(), |
| /*label=*/{}); |
| |
| ClipStack cs(kDeviceBounds, &matrixProvider, false); |
| |
| cs.save(); |
| for (int y = 0; y < 10; ++y) { |
| for (int x = 0; x < 10; ++x) { |
| cs.clipRect(SkMatrix::I(), SkRect::MakeXYWH(10*x+1, 10*y+1, 8, 8), |
| GrAA::kNo, SkClipOp::kDifference); |
| } |
| } |
| |
| GrAppliedClip out(kDeviceBounds.size()); |
| SkRect drawBounds = SkRect::Make(kDeviceBounds); |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawBounds); |
| |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kClipped); |
| REPORTER_ASSERT(r, out.windowRectsState().numWindows() == 8); |
| |
| cs.restore(); |
| } |
| |
| // Tests that when a stack is forced to always be AA, non-AA elements become AA |
| DEF_TEST(ClipStack_ForceAA, r) { |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| ClipStack cs(kDeviceBounds, nullptr, true); |
| |
| // AA will remain AA |
| SkRect aaRect = {0.25f, 12.43f, 25.2f, 23.f}; |
| cs.clipRect(SkMatrix::I(), aaRect, GrAA::kYes, SkClipOp::kIntersect); |
| |
| // Non-AA will become AA |
| SkPath nonAAPath = make_octagon({2.f, 10.f, 16.f, 20.f}); |
| cs.clipPath(SkMatrix::I(), nonAAPath, GrAA::kNo, SkClipOp::kIntersect); |
| |
| // Non-AA rects remain non-AA so they can be applied as a scissor |
| SkRect nonAARect = {4.5f, 5.f, 17.25f, 18.23f}; |
| cs.clipRect(SkMatrix::I(), nonAARect, GrAA::kNo, SkClipOp::kIntersect); |
| |
| // The stack reports elements newest first, but the non-AA rect op was combined in place with |
| // the first aa rect, so we should see nonAAPath as AA, and then the intersection of rects. |
| auto elements = cs.begin(); |
| |
| const ClipStack::Element& nonAARectElement = *elements; |
| REPORTER_ASSERT(r, nonAARectElement.fShape.isRect(), "Expected rect element"); |
| REPORTER_ASSERT(r, nonAARectElement.fAA == GrAA::kNo, |
| "Axis-aligned non-AA rect ignores forceAA"); |
| REPORTER_ASSERT(r, nonAARectElement.fShape.rect() == nonAARect, |
| "Mixed AA rects should not combine"); |
| |
| ++elements; |
| const ClipStack::Element& aaPathElement = *elements; |
| REPORTER_ASSERT(r, aaPathElement.fShape.isPath(), "Expected path element"); |
| REPORTER_ASSERT(r, aaPathElement.fShape.path() == nonAAPath, "Wrong path element"); |
| REPORTER_ASSERT(r, aaPathElement.fAA == GrAA::kYes, "Path element not promoted to AA"); |
| |
| ++elements; |
| const ClipStack::Element& aaRectElement = *elements; |
| REPORTER_ASSERT(r, aaRectElement.fShape.isRect(), "Expected rect element"); |
| REPORTER_ASSERT(r, aaRectElement.fShape.rect() == aaRect, |
| "Mixed AA rects should not combine"); |
| REPORTER_ASSERT(r, aaRectElement.fAA == GrAA::kYes, "Rect element stays AA"); |
| |
| ++elements; |
| REPORTER_ASSERT(r, !(elements != cs.end()), "Expected only three clip elements"); |
| } |
| |
| // Tests preApply works as expected for device rects, rrects, and reports clipped-out, etc. as |
| // expected. |
| DEF_TEST(ClipStack_PreApply, r) { |
| using ClipStack = skgpu::v1::ClipStack; |
| |
| ClipStack cs(kDeviceBounds, nullptr, false); |
| |
| // Offscreen is kClippedOut |
| GrClip::PreClipResult result = cs.preApply({-10.f, -10.f, -1.f, -1.f}, GrAA::kYes); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClippedOut, |
| "Offscreen draw is kClippedOut"); |
| |
| // Intersecting screen with wide-open clip is kUnclipped |
| result = cs.preApply({-10.f, -10.f, 10.f, 10.f}, GrAA::kYes); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kUnclipped, |
| "Wide open screen intersection is still kUnclipped"); |
| |
| // Empty clip is clipped out |
| cs.save(); |
| cs.clipRect(SkMatrix::I(), SkRect::MakeEmpty(), GrAA::kNo, SkClipOp::kIntersect); |
| result = cs.preApply({0.f, 0.f, 20.f, 20.f}, GrAA::kYes); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClippedOut, |
| "Empty clip stack preApplies as kClippedOut"); |
| cs.restore(); |
| |
| // Contained inside clip is kUnclipped (using rrect for the outer clip element since paths |
| // don't support an inner bounds and anything complex is otherwise skipped in preApply). |
| SkRect rect = {10.f, 10.f, 40.f, 40.f}; |
| SkRRect bigRRect = SkRRect::MakeRectXY(rect.makeOutset(5.f, 5.f), 5.f, 5.f); |
| cs.save(); |
| cs.clipRRect(SkMatrix::I(), bigRRect, GrAA::kYes, SkClipOp::kIntersect); |
| result = cs.preApply(rect, GrAA::kYes); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kUnclipped, |
| "Draw contained within clip is kUnclipped"); |
| |
| // Disjoint from clip (but still on screen) is kClippedOut |
| result = cs.preApply({50.f, 50.f, 60.f, 60.f}, GrAA::kYes); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClippedOut, |
| "Draw not intersecting clip is kClippedOut"); |
| cs.restore(); |
| |
| // Intersecting clip is kClipped for complex shape |
| cs.save(); |
| SkPath path = make_octagon(rect.makeOutset(5.f, 5.f), 5.f, 5.f); |
| cs.clipPath(SkMatrix::I(), path, GrAA::kYes, SkClipOp::kIntersect); |
| result = cs.preApply(path.getBounds(), GrAA::kNo); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClipped && !result.fIsRRect, |
| "Draw with complex clip is kClipped, but is not an rrect"); |
| cs.restore(); |
| |
| // Intersecting clip is kDeviceRect for axis-aligned rect clip |
| cs.save(); |
| cs.clipRect(SkMatrix::I(), rect, GrAA::kYes, SkClipOp::kIntersect); |
| result = cs.preApply(rect.makeOffset(2.f, 2.f), GrAA::kNo); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClipped && |
| result.fAA == GrAA::kYes && |
| result.fIsRRect && |
| result.fRRect == SkRRect::MakeRect(rect), |
| "kDeviceRect clip stack should be reported by preApply"); |
| cs.restore(); |
| |
| // Intersecting clip is kDeviceRRect for axis-aligned rrect clip |
| cs.save(); |
| SkRRect clipRRect = SkRRect::MakeRectXY(rect, 5.f, 5.f); |
| cs.clipRRect(SkMatrix::I(), clipRRect, GrAA::kYes, SkClipOp::kIntersect); |
| result = cs.preApply(rect.makeOffset(2.f, 2.f), GrAA::kNo); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClipped && |
| result.fAA == GrAA::kYes && |
| result.fIsRRect && |
| result.fRRect == clipRRect, |
| "kDeviceRRect clip stack should be reported by preApply"); |
| cs.restore(); |
| } |
| |
| // Tests the clip shader entry point |
| DEF_TEST(ClipStack_Shader, r) { |
| using ClipStack = skgpu::v1::ClipStack; |
| using SurfaceDrawContext = skgpu::v1::SurfaceDrawContext; |
| |
| sk_sp<SkShader> shader = SkShaders::Color({0.f, 0.f, 0.f, 0.5f}, nullptr); |
| |
| SkMatrixProvider matrixProvider = SkMatrix::I(); |
| sk_sp<GrDirectContext> context = GrDirectContext::MakeMock(nullptr); |
| std::unique_ptr<SurfaceDrawContext> sdc = SurfaceDrawContext::Make( |
| context.get(), GrColorType::kRGBA_8888, SkColorSpace::MakeSRGB(), |
| SkBackingFit::kExact, kDeviceBounds.size(), SkSurfaceProps(), |
| /*label=*/{}); |
| |
| ClipStack cs(kDeviceBounds, &matrixProvider, false); |
| cs.save(); |
| cs.clipShader(shader); |
| |
| REPORTER_ASSERT(r, cs.clipState() == ClipStack::ClipState::kComplex, |
| "A clip shader should be reported as a complex clip"); |
| |
| GrAppliedClip out(kDeviceBounds.size()); |
| SkRect drawBounds = {10.f, 11.f, 16.f, 32.f}; |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawBounds); |
| |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kClipped, |
| "apply() should return kClipped for a clip shader"); |
| REPORTER_ASSERT(r, out.hasCoverageFragmentProcessor(), |
| "apply() should have converted clip shader to a coverage FP"); |
| |
| GrAppliedClip out2(kDeviceBounds.size()); |
| drawBounds = {-15.f, -10.f, -1.f, 10.f}; // offscreen |
| effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, &out2, |
| &drawBounds); |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kClippedOut, |
| "apply() should still discard offscreen draws with a clip shader"); |
| |
| cs.restore(); |
| REPORTER_ASSERT(r, cs.clipState() == ClipStack::ClipState::kWideOpen, |
| "restore() should get rid of the clip shader"); |
| |
| |
| // Adding a clip shader on top of a device rect clip should prevent preApply from reporting |
| // it as a device rect |
| cs.clipRect(SkMatrix::I(), {10, 15, 30, 30}, GrAA::kNo, SkClipOp::kIntersect); |
| SkASSERT(cs.clipState() == ClipStack::ClipState::kDeviceRect); // test precondition |
| cs.clipShader(shader); |
| GrClip::PreClipResult result = cs.preApply(SkRect::Make(kDeviceBounds), GrAA::kYes); |
| REPORTER_ASSERT(r, result.fEffect == GrClip::Effect::kClipped && !result.fIsRRect, |
| "A clip shader should not produce a device rect from preApply"); |
| } |
| |
| // Tests apply() under simple circumstances, that don't require actual rendering of masks, or |
| // atlases. This lets us define the test regularly instead of a GPU-only test. |
| // - This is not exhaustive and is challenging to unit test, so apply() is predominantly tested by |
| // the GMs instead. |
| DEF_TEST(ClipStack_SimpleApply, r) { |
| using ClipStack = skgpu::v1::ClipStack; |
| using SurfaceDrawContext = skgpu::v1::SurfaceDrawContext; |
| |
| SkMatrixProvider matrixProvider = SkMatrix::I(); |
| sk_sp<GrDirectContext> context = GrDirectContext::MakeMock(nullptr); |
| std::unique_ptr<SurfaceDrawContext> sdc = SurfaceDrawContext::Make( |
| context.get(), GrColorType::kRGBA_8888, SkColorSpace::MakeSRGB(), |
| SkBackingFit::kExact, kDeviceBounds.size(), SkSurfaceProps(), |
| /*label=*/{}); |
| |
| ClipStack cs(kDeviceBounds, &matrixProvider, false); |
| |
| // Offscreen draw is kClippedOut |
| { |
| SkRect drawBounds = {-15.f, -15.f, -1.f, -1.f}; |
| |
| GrAppliedClip out(kDeviceBounds.size()); |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawBounds); |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kClippedOut, "Offscreen draw is clipped out"); |
| } |
| |
| // Draw contained in clip is kUnclipped |
| { |
| SkRect drawBounds = {15.4f, 16.3f, 26.f, 32.f}; |
| cs.save(); |
| cs.clipPath(SkMatrix::I(), make_octagon(drawBounds.makeOutset(5.f, 5.f), 5.f, 5.f), |
| GrAA::kYes, SkClipOp::kIntersect); |
| |
| GrAppliedClip out(kDeviceBounds.size()); |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawBounds); |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kUnclipped, "Draw inside clip is unclipped"); |
| cs.restore(); |
| } |
| |
| // Draw bounds are cropped to device space before checking contains |
| { |
| SkRect clipRect = {kDeviceBounds.fRight - 20.f, 10.f, kDeviceBounds.fRight, 20.f}; |
| SkRect drawRect = clipRect.makeOffset(10.f, 0.f); |
| |
| cs.save(); |
| cs.clipRect(SkMatrix::I(), clipRect, GrAA::kNo, SkClipOp::kIntersect); |
| |
| GrAppliedClip out(kDeviceBounds.size()); |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawRect); |
| REPORTER_ASSERT(r, SkRect::Make(kDeviceBounds).contains(drawRect), |
| "Draw rect should be clipped to device rect"); |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kUnclipped, |
| "After device clipping, this should be detected as contained within clip"); |
| cs.restore(); |
| } |
| |
| // Non-AA device rect intersect is just a scissor |
| { |
| SkRect clipRect = {15.3f, 17.23f, 30.2f, 50.8f}; |
| SkRect drawRect = clipRect.makeOutset(10.f, 10.f); |
| SkIRect expectedScissor = clipRect.round(); |
| |
| cs.save(); |
| cs.clipRect(SkMatrix::I(), clipRect, GrAA::kNo, SkClipOp::kIntersect); |
| |
| GrAppliedClip out(kDeviceBounds.size()); |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawRect); |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kClipped, "Draw should be clipped by rect"); |
| REPORTER_ASSERT(r, !out.hasCoverageFragmentProcessor(), "Clip should not use coverage FPs"); |
| REPORTER_ASSERT(r, !out.hardClip().hasStencilClip(), "Clip should not need stencil"); |
| REPORTER_ASSERT(r, !out.hardClip().windowRectsState().enabled(), |
| "Clip should not need window rects"); |
| REPORTER_ASSERT(r, out.scissorState().enabled() && |
| out.scissorState().rect() == expectedScissor, |
| "Clip has unexpected scissor rectangle"); |
| cs.restore(); |
| } |
| |
| // Analytic coverage FPs |
| auto testHasCoverageFP = [&](SkRect drawBounds) { |
| GrAppliedClip out(kDeviceBounds.size()); |
| GrClip::Effect effect = cs.apply(context.get(), sdc.get(), NoOp::Get(), GrAAType::kCoverage, |
| &out, &drawBounds); |
| REPORTER_ASSERT(r, effect == GrClip::Effect::kClipped, "Draw should be clipped"); |
| REPORTER_ASSERT(r, out.scissorState().enabled(), "Coverage FPs should still set scissor"); |
| REPORTER_ASSERT(r, out.hasCoverageFragmentProcessor(), "Clip should use coverage FP"); |
| }; |
| |
| // Axis-aligned rect can be an analytic FP |
| { |
| cs.save(); |
| cs.clipRect(SkMatrix::I(), {10.2f, 8.342f, 63.f, 23.3f}, GrAA::kYes, |
| SkClipOp::kDifference); |
| testHasCoverageFP({9.f, 10.f, 30.f, 18.f}); |
| cs.restore(); |
| } |
| |
| // Axis-aligned round rect can be an analytic FP |
| { |
| SkRect rect = {4.f, 8.f, 20.f, 20.f}; |
| cs.save(); |
| cs.clipRRect(SkMatrix::I(), SkRRect::MakeRectXY(rect, 3.f, 3.f), GrAA::kYes, |
| SkClipOp::kIntersect); |
| testHasCoverageFP(rect.makeOffset(2.f, 2.f)); |
| cs.restore(); |
| } |
| |
| // Transformed rect can be an analytic FP |
| { |
| SkRect rect = {14.f, 8.f, 30.f, 22.34f}; |
| SkMatrix rot = SkMatrix::RotateDeg(34.f); |
| cs.save(); |
| cs.clipRect(rot, rect, GrAA::kNo, SkClipOp::kIntersect); |
| testHasCoverageFP(rot.mapRect(rect)); |
| cs.restore(); |
| } |
| |
| // Convex polygons can be an analytic FP |
| { |
| SkRect rect = {15.f, 15.f, 45.f, 45.f}; |
| cs.save(); |
| cs.clipPath(SkMatrix::I(), make_octagon(rect), GrAA::kYes, SkClipOp::kIntersect); |
| testHasCoverageFP(rect.makeOutset(2.f, 2.f)); |
| cs.restore(); |
| } |
| } |
| |
| // Must disable tessellation in order to trigger SW mask generation when the clip stack is applied. |
| static void disable_tessellation_atlas(GrContextOptions* options) { |
| options->fGpuPathRenderers = GpuPathRenderers::kNone; |
| options->fAvoidStencilBuffers = true; |
| } |
| |
| DEF_GPUTEST_FOR_CONTEXTS(ClipStack_SWMask, |
| sk_gpu_test::GrContextFactory::IsRenderingContext, |
| r, |
| ctxInfo, |
| disable_tessellation_atlas, |
| CtsEnforcement::kNever) { |
| using ClipStack = skgpu::v1::ClipStack; |
| using SurfaceDrawContext = skgpu::v1::SurfaceDrawContext; |
| |
| GrDirectContext* context = ctxInfo.directContext(); |
| std::unique_ptr<SurfaceDrawContext> sdc = SurfaceDrawContext::Make( |
| context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, kDeviceBounds.size(), |
| SkSurfaceProps(), /*label=*/{}); |
| |
| SkMatrixProvider matrixProvider = SkMatrix::I(); |
| std::unique_ptr<ClipStack> cs(new ClipStack(kDeviceBounds, &matrixProvider, false)); |
| |
| auto addMaskRequiringClip = [&](SkScalar x, SkScalar y, SkScalar radius) { |
| SkPath path; |
| path.addCircle(x, y, radius); |
| path.addCircle(x + radius / 2.f, y + radius / 2.f, radius); |
| path.setFillType(SkPathFillType::kEvenOdd); |
| |
| // Use AA so that clip application does not route through the stencil buffer |
| cs->clipPath(SkMatrix::I(), path, GrAA::kYes, SkClipOp::kIntersect); |
| }; |
| |
| auto drawRect = [&](SkRect drawBounds) { |
| GrPaint paint; |
| paint.setColor4f({1.f, 1.f, 1.f, 1.f}); |
| sdc->drawRect(cs.get(), std::move(paint), GrAA::kYes, SkMatrix::I(), drawBounds); |
| }; |
| |
| auto generateMask = [&](SkRect drawBounds) { |
| skgpu::UniqueKey priorKey = cs->testingOnly_getLastSWMaskKey(); |
| drawRect(drawBounds); |
| skgpu::UniqueKey newKey = cs->testingOnly_getLastSWMaskKey(); |
| REPORTER_ASSERT(r, priorKey != newKey, "Did not generate a new SW mask key as expected"); |
| return newKey; |
| }; |
| |
| auto verifyKeys = [&](const std::vector<skgpu::UniqueKey>& expectedKeys, |
| const std::vector<skgpu::UniqueKey>& releasedKeys) { |
| context->flush(); |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| |
| #ifdef SK_DEBUG |
| // The proxy providers key count fluctuates based on proxy lifetime, but we want to |
| // verify the resource count, and that requires using key tags that are debug-only. |
| SkASSERT(expectedKeys.size() > 0 || releasedKeys.size() > 0); |
| const char* tag = expectedKeys.size() > 0 ? expectedKeys[0].tag() : releasedKeys[0].tag(); |
| GrResourceCache* cache = context->priv().getResourceCache(); |
| int numProxies = cache->countUniqueKeysWithTag(tag); |
| REPORTER_ASSERT(r, (int) expectedKeys.size() == numProxies, |
| "Unexpected proxy count, got %d, not %d", |
| numProxies, (int) expectedKeys.size()); |
| #endif |
| |
| for (const auto& key : expectedKeys) { |
| auto proxy = proxyProvider->findOrCreateProxyByUniqueKey(key); |
| REPORTER_ASSERT(r, SkToBool(proxy), "Unable to find resource for expected mask key"); |
| } |
| for (const auto& key : releasedKeys) { |
| auto proxy = proxyProvider->findOrCreateProxyByUniqueKey(key); |
| REPORTER_ASSERT(r, !SkToBool(proxy), "SW mask not released as expected"); |
| } |
| }; |
| |
| // Creates a mask for a complex clip |
| cs->save(); |
| addMaskRequiringClip(5.f, 5.f, 20.f); |
| skgpu::UniqueKey keyADepth1 = generateMask({0.f, 0.f, 20.f, 20.f}); |
| skgpu::UniqueKey keyBDepth1 = generateMask({10.f, 10.f, 30.f, 30.f}); |
| verifyKeys({keyADepth1, keyBDepth1}, {}); |
| |
| // Creates a new mask for a new save record, but doesn't delete the old records |
| cs->save(); |
| addMaskRequiringClip(6.f, 6.f, 15.f); |
| skgpu::UniqueKey keyADepth2 = generateMask({0.f, 0.f, 20.f, 20.f}); |
| skgpu::UniqueKey keyBDepth2 = generateMask({10.f, 10.f, 30.f, 30.f}); |
| verifyKeys({keyADepth1, keyBDepth1, keyADepth2, keyBDepth2}, {}); |
| |
| // Release after modifying the current record (even if we don't draw anything) |
| addMaskRequiringClip(4.f, 4.f, 15.f); |
| skgpu::UniqueKey keyCDepth2 = generateMask({4.f, 4.f, 16.f, 20.f}); |
| verifyKeys({keyADepth1, keyBDepth1, keyCDepth2}, {keyADepth2, keyBDepth2}); |
| |
| // Release after restoring an older record |
| cs->restore(); |
| verifyKeys({keyADepth1, keyBDepth1}, {keyCDepth2}); |
| |
| // Drawing finds the old masks at depth 1 still w/o making new ones |
| drawRect({0.f, 0.f, 20.f, 20.f}); |
| drawRect({10.f, 10.f, 30.f, 30.f}); |
| verifyKeys({keyADepth1, keyBDepth1}, {}); |
| |
| // Drawing something contained within a previous mask also does not make a new one |
| drawRect({5.f, 5.f, 15.f, 15.f}); |
| verifyKeys({keyADepth1, keyBDepth1}, {}); |
| |
| // Release on destruction |
| cs = nullptr; |
| verifyKeys({}, {keyADepth1, keyBDepth1}); |
| } |