blob: d1000282da334f286e831cc0029a957662087df0 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkLinearBitmapPipeline.h"
struct X {
explicit X(SkScalar val) : fVal{val} { }
explicit X(SkPoint pt) : fVal{pt.fX} { }
explicit X(SkSize s) : fVal{s.fWidth} { }
explicit X(SkISize s) : fVal(s.fWidth) { }
operator float () const {return fVal;}
private:
float fVal;
};
struct Y {
explicit Y(SkScalar val) : fVal{val} { }
explicit Y(SkPoint pt) : fVal{pt.fY} { }
explicit Y(SkSize s) : fVal{s.fHeight} { }
explicit Y(SkISize s) : fVal(s.fHeight) { }
operator float () const {return fVal;}
private:
float fVal;
};
template<typename Strategy, typename Next>
class PointProcessor : public PointProcessorInterface {
public:
template <typename... Args>
PointProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
fNext->pointListFew(n, newXs, newYs);
}
void pointList4(Sk4fArg xs, Sk4fArg ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
fNext->pointList4(newXs, newYs);
}
private:
Next* const fNext;
Strategy fStrategy;
};
class SkippedStage final : public PointProcessorInterface {
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
SkFAIL("Abort tiler.");
}
void pointList4(Sk4fArg Xs, Sk4fArg Ys) override {
SkFAIL("Abort point processor.");
}
};
class TranslateMatrixStrategy {
public:
TranslateMatrixStrategy(SkVector offset)
: fXOffset{X(offset)}
, fYOffset{Y(offset)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
*xs = *xs + fXOffset;
*ys = *ys + fYOffset;
}
private:
const Sk4f fXOffset, fYOffset;
};
template <typename Next = PointProcessorInterface>
using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>;
class ScaleMatrixStrategy {
public:
ScaleMatrixStrategy(SkVector offset, SkVector scale)
: fXOffset{X(offset)}, fYOffset{Y(offset)}
, fXScale{X(scale)}, fYScale{Y(scale)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
*xs = *xs * fXScale + fXOffset;
*ys = *ys * fYScale + fYOffset;
}
private:
const Sk4f fXOffset, fYOffset;
const Sk4f fXScale, fYScale;
};
template <typename Next = PointProcessorInterface>
using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>;
class AffineMatrixStrategy {
public:
AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew)
: fXOffset{X(offset)}, fYOffset{Y(offset)}
, fXScale{X(scale)}, fYScale{Y(scale)}
, fXSkew{X(skew)}, fYSkew{Y(skew)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
Sk4f newXs = fXScale * *xs + fXSkew * *ys + fXOffset;
Sk4f newYs = fYSkew * *xs + fYScale * *ys + fYOffset;
*xs = newXs;
*ys = newYs;
}
private:
const Sk4f fXOffset, fYOffset;
const Sk4f fXScale, fYScale;
const Sk4f fXSkew, fYSkew;
};
template <typename Next = PointProcessorInterface>
using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>;
static PointProcessorInterface* choose_matrix(
PointProcessorInterface* next,
const SkMatrix& inverse,
SkLinearBitmapPipeline::MatrixStage* matrixProc) {
if (inverse.hasPerspective()) {
SkFAIL("Not implemented.");
} else if (inverse.getSkewX() != 0.0f || inverse.getSkewY() != 0.0f) {
matrixProc->Initialize<AffineMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()},
SkVector{inverse.getSkewX(), inverse.getSkewY()});
} else if (inverse.getScaleX() != 1.0f || inverse.getScaleY() != 1.0f) {
matrixProc->Initialize<ScaleMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()});
} else if (inverse.getTranslateX() != 0.0f || inverse.getTranslateY() != 0.0f) {
matrixProc->Initialize<TranslateMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()});
} else {
matrixProc->Initialize<SkippedStage>();
return next;
}
return matrixProc->get();
}
class ClampStrategy {
public:
ClampStrategy(X max)
: fXMin{0.0f}
, fXMax{max - 1.0f} { }
ClampStrategy(Y max)
: fYMin{0.0f}
, fYMax{max - 1.0f} { }
ClampStrategy(SkSize max)
: fXMin{0.0f}
, fYMin{0.0f}
, fXMax{X(max) - 1.0f}
, fYMax{Y(max) - 1.0f} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
*xs = Sk4f::Min(Sk4f::Max(*xs, fXMin), fXMax);
*ys = Sk4f::Min(Sk4f::Max(*ys, fYMin), fYMax);
}
private:
const Sk4f fXMin{SK_FloatNegativeInfinity};
const Sk4f fYMin{SK_FloatNegativeInfinity};
const Sk4f fXMax{SK_FloatInfinity};
const Sk4f fYMax{SK_FloatInfinity};
};
template <typename Next = PointProcessorInterface>
using Clamp = PointProcessor<ClampStrategy, Next>;
class RepeatStrategy {
public:
RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { }
RepeatStrategy(Y max) : fYMax{max}, fYInvMax{1.0f/max} { }
RepeatStrategy(SkSize max)
: fXMax{X(max)}
, fXInvMax{1.0f / X(max)}
, fYMax{Y(max)}
, fYInvMax{1.0f / Y(max)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
Sk4f divX = (*xs * fXInvMax).floor();
Sk4f divY = (*ys * fYInvMax).floor();
Sk4f baseX = (divX * fXMax);
Sk4f baseY = (divY * fYMax);
*xs = *xs - baseX;
*ys = *ys - baseY;
}
private:
const Sk4f fXMax{0.0f};
const Sk4f fXInvMax{0.0f};
const Sk4f fYMax{0.0f};
const Sk4f fYInvMax{0.0f};
};
template <typename Next = PointProcessorInterface>
using Repeat = PointProcessor<RepeatStrategy, Next>;
static PointProcessorInterface* choose_tiler(
PointProcessorInterface* next,
SkSize dimensions,
SkShader::TileMode xMode,
SkShader::TileMode yMode,
SkLinearBitmapPipeline::TileStage* tileProcXOrBoth,
SkLinearBitmapPipeline::TileStage* tileProcY) {
if (xMode == yMode) {
switch (xMode) {
case SkShader::kClamp_TileMode:
tileProcXOrBoth->Initialize<Clamp<>>(next, dimensions);
break;
case SkShader::kRepeat_TileMode:
tileProcXOrBoth->Initialize<Repeat<>>(next, dimensions);
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
tileProcY->Initialize<SkippedStage>();
} else {
switch (yMode) {
case SkShader::kClamp_TileMode:
tileProcY->Initialize<Clamp<>>(next, Y(dimensions));
break;
case SkShader::kRepeat_TileMode:
tileProcY->Initialize<Repeat<>>(next, Y(dimensions));
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
switch (xMode) {
case SkShader::kClamp_TileMode:
tileProcXOrBoth->Initialize<Clamp<>>(tileProcY->get(), X(dimensions));
break;
case SkShader::kRepeat_TileMode:
tileProcXOrBoth->Initialize<Repeat<>>(tileProcY->get(), X(dimensions));
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
}
return tileProcXOrBoth->get();
}
class sRGBFast {
public:
static Sk4f sRGBToLinear(Sk4fArg pixel) {
Sk4f l = pixel * pixel;
return Sk4f{l[0], l[1], l[2], pixel[3]};
}
};
template <SkColorProfileType colorProfile>
class Passthrough8888 {
public:
Passthrough8888(int width, const uint32_t* src)
: fSrc{src}, fWidth{width}{ }
void getFewPixels(int n, Sk4fArg xs, Sk4fArg ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
Sk4i XIs = SkNx_cast<int, float>(xs);
Sk4i YIs = SkNx_cast<int, float>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
switch (n) {
case 3:
*px2 = getPixel(fSrc, bufferLoc[2]);
case 2:
*px1 = getPixel(fSrc, bufferLoc[1]);
case 1:
*px0 = getPixel(fSrc, bufferLoc[0]);
default:
break;
}
}
void get4Pixels(Sk4fArg xs, Sk4fArg ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
Sk4i XIs = SkNx_cast<int, float>(xs);
Sk4i YIs = SkNx_cast<int, float>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
*px0 = getPixel(fSrc, bufferLoc[0]);
*px1 = getPixel(fSrc, bufferLoc[1]);
*px2 = getPixel(fSrc, bufferLoc[2]);
*px3 = getPixel(fSrc, bufferLoc[3]);
}
const uint32_t* row(int y) { return fSrc + y * fWidth[0]; }
private:
Sk4f getPixel(const uint32_t* src, int index) {
Sk4b bytePixel = Sk4b::Load((uint8_t *)(&src[index]));
Sk4f pixel = SkNx_cast<float, uint8_t>(bytePixel);
pixel = pixel * Sk4f{1.0f/255.0f};
if (colorProfile == kSRGB_SkColorProfileType) {
pixel = sRGBFast::sRGBToLinear(pixel);
}
return pixel;
}
const uint32_t* const fSrc;
const Sk4i fWidth;
};
template <typename SourceStrategy>
class Sampler final : public PointProcessorInterface {
public:
template <typename... Args>
Sampler(PixelPlacerInterface* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...} { }
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
SkASSERT(0 < n && n < 4);
Sk4f px0, px1, px2;
fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2);
if (n >= 1) fNext->placePixel(px0);
if (n >= 2) fNext->placePixel(px1);
if (n >= 3) fNext->placePixel(px2);
}
void pointList4(Sk4fArg xs, Sk4fArg ys) override {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
fNext->place4Pixels(px0, px1, px2, px3);
}
private:
PixelPlacerInterface* const fNext;
SourceStrategy fStrategy;
};
static PointProcessorInterface* choose_pixel_sampler(
PixelPlacerInterface* next,
const SkImageInfo& imageInfo,
const void* imageData,
SkLinearBitmapPipeline::SampleStage* sampleStage) {
switch (imageInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
if (kN32_SkColorType == imageInfo.colorType()) {
if (imageInfo.profileType() == kSRGB_SkColorProfileType) {
sampleStage->Initialize<Sampler<Passthrough8888<kSRGB_SkColorProfileType>>>(
next, imageInfo.width(),
(uint32_t*)imageData);
} else {
sampleStage->Initialize<Sampler<Passthrough8888<kLinear_SkColorProfileType>>>(
next, imageInfo.width(),
(uint32_t*)imageData);
}
} else {
SkFAIL("Not implemented. No 8888 Swizzle");
}
break;
default:
SkFAIL("Not implemented. Unsupported src");
break;
}
return sampleStage->get();
}
template <SkAlphaType alphaType>
class PlaceFPPixel final : public PixelPlacerInterface {
public:
void placePixel(Sk4fArg pixel) override {
PlacePixel(fDst, pixel, 0);
fDst += 1;
}
void place4Pixels(Sk4fArg p0, Sk4fArg p1, Sk4fArg p2, Sk4fArg p3) override {
SkPM4f* dst = fDst;
PlacePixel(dst, p0, 0);
PlacePixel(dst, p1, 1);
PlacePixel(dst, p2, 2);
PlacePixel(dst, p3, 3);
fDst += 4;
}
void setDestination(SkPM4f* dst) override {
fDst = dst;
}
private:
static void PlacePixel(SkPM4f* dst, Sk4fArg pixel, int index) {
Sk4f newPixel = pixel;
if (alphaType == kUnpremul_SkAlphaType) {
newPixel = Premultiply(pixel);
}
newPixel.store(dst + index);
}
static Sk4f Premultiply(Sk4fArg pixel) {
float alpha = pixel[3];
return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
}
SkPM4f* fDst;
};
static PixelPlacerInterface* choose_pixel_placer(
SkAlphaType alphaType,
SkLinearBitmapPipeline::PixelStage* placerStage) {
if (alphaType == kUnpremul_SkAlphaType) {
placerStage->Initialize<PlaceFPPixel<kUnpremul_SkAlphaType>>();
} else {
// kOpaque_SkAlphaType is treated the same as kPremul_SkAlphaType
placerStage->Initialize<PlaceFPPixel<kPremul_SkAlphaType>>();
}
return placerStage->get();
}
SkLinearBitmapPipeline::SkLinearBitmapPipeline(
const SkMatrix& inverse,
SkShader::TileMode xTile, SkShader::TileMode yTile,
const SkImageInfo& srcImageInfo,
const void* srcImageData) {
SkSize size;
size = srcImageInfo.dimensions();
// As the stages are built, the chooser function may skip a stage. For example, with the
// identity matrix, the matrix stage is skipped, and the tilerStage is the first stage.
auto placementStage = choose_pixel_placer(srcImageInfo.alphaType(), &fPixelStage);
auto samplerStage = choose_pixel_sampler(placementStage, srcImageInfo,
srcImageData, &fSampleStage);
auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileXOrBothStage,
&fTileYStage);
fFirstStage = choose_matrix(tilerStage, inverse, &fMatrixStage);
}
void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) {
fPixelStage->setDestination(dst);
Sk4f Xs = Sk4f(x) + Sk4f{0.5f, 1.5f, 2.5f, 3.5f};
Sk4f Ys(y);
Sk4f fours{4.0f};
while (count >= 4) {
fFirstStage->pointList4(Xs, Ys);
Xs = Xs + fours;
count -= 4;
}
if (count > 0) {
fFirstStage->pointListFew(count, Xs, Ys);
}
}