blob: de4fd5a9b472aa12dfbe391673721b181d27f0f4 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrRenderTarget.h"
#include "include/gpu/vk/GrVkBackendContext.h"
#include "include/gpu/vk/GrVkExtensions.h"
#include "src/gpu/GrRenderTargetProxy.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/vk/GrVkCaps.h"
#include "src/gpu/vk/GrVkInterface.h"
#include "src/gpu/vk/GrVkTexture.h"
#include "src/gpu/vk/GrVkUtil.h"
#ifdef SK_BUILD_FOR_ANDROID
#include <sys/system_properties.h>
#endif
GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
uint32_t instanceVersion, uint32_t physicalDeviceVersion,
const GrVkExtensions& extensions, GrProtected isProtected)
: INHERITED(contextOptions) {
/**************************************************************************
* GrCaps fields
**************************************************************************/
fMipMapSupport = true; // always available in Vulkan
fSRGBSupport = true; // always available in Vulkan
fNPOTTextureTileSupport = true; // always available in Vulkan
fDiscardRenderTargetSupport = true;
fReuseScratchTextures = true; //TODO: figure this out
fGpuTracingSupport = false; //TODO: figure this out
fCompressedTexSubImageSupport = true;
fOversizedStencilSupport = false; //TODO: figure this out
fInstanceAttribSupport = true;
fSemaphoreSupport = true; // always available in Vulkan
fFenceSyncSupport = true; // always available in Vulkan
fCrossContextTextureSupport = true;
fHalfFloatVertexAttributeSupport = true;
fTransferBufferSupport = true;
fMaxRenderTargetSize = 4096; // minimum required by spec
fMaxTextureSize = 4096; // minimum required by spec
fDynamicStateArrayGeometryProcessorTextureSupport = true;
fShaderCaps.reset(new GrShaderCaps(contextOptions));
this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
isProtected);
}
bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc,
bool* rectsMustMatch, bool* disallowSubrect) const {
// Vk doesn't use rectsMustMatch or disallowSubrect. Always return false.
*rectsMustMatch = false;
*disallowSubrect = false;
// We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa).
// For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a
// render target as well.
desc->fConfig = src->config();
if (src->numSamples() > 1 || src->asTextureProxy()) {
desc->fFlags = kRenderTarget_GrSurfaceFlag;
} else {
// Just going to use CopyImage here
desc->fFlags = kNone_GrSurfaceFlags;
}
return true;
}
static int get_compatible_format_class(GrPixelConfig config) {
switch (config) {
case kAlpha_8_GrPixelConfig:
case kAlpha_8_as_Red_GrPixelConfig:
case kGray_8_GrPixelConfig:
case kGray_8_as_Red_GrPixelConfig:
return 1;
case kRGB_565_GrPixelConfig:
case kRGBA_4444_GrPixelConfig:
case kRG_88_GrPixelConfig:
case kAlpha_half_GrPixelConfig:
case kAlpha_half_as_Red_GrPixelConfig:
case kR_16_GrPixelConfig:
return 2;
case kRGB_888_GrPixelConfig:
return 3;
case kRGBA_8888_GrPixelConfig:
case kRGB_888X_GrPixelConfig:
case kBGRA_8888_GrPixelConfig:
case kSRGBA_8888_GrPixelConfig:
case kSBGRA_8888_GrPixelConfig:
case kRGBA_1010102_GrPixelConfig:
case kRG_1616_GrPixelConfig:
return 4;
case kRGBA_half_GrPixelConfig:
case kRGBA_half_Clamped_GrPixelConfig:
case kRG_float_GrPixelConfig:
return 5;
case kRGBA_float_GrPixelConfig:
return 6;
case kRGB_ETC1_GrPixelConfig:
return 7;
case kUnknown_GrPixelConfig:
case kAlpha_8_as_Alpha_GrPixelConfig:
case kGray_8_as_Lum_GrPixelConfig:
SK_ABORT("Unsupported Vulkan pixel config");
return 0;
// Experimental (for Y416 and mutant P016/P010)
case kRGBA_16161616_GrPixelConfig:
return 8;
case kRG_half_GrPixelConfig:
return 4;
}
SK_ABORT("Invalid pixel config");
return 0;
}
bool GrVkCaps::canCopyImage(GrPixelConfig dstConfig, int dstSampleCnt, bool dstHasYcbcr,
GrPixelConfig srcConfig, int srcSampleCnt, bool srcHasYcbcr) const {
if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
return false;
}
if (dstHasYcbcr || srcHasYcbcr) {
return false;
}
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
if (get_compatible_format_class(srcConfig) != get_compatible_format_class(dstConfig)) {
return false;
}
return true;
}
bool GrVkCaps::canCopyAsBlit(GrPixelConfig dstConfig, int dstSampleCnt, bool dstIsLinear,
bool dstHasYcbcr, GrPixelConfig srcConfig, int srcSampleCnt,
bool srcIsLinear, bool srcHasYcbcr) const {
VkFormat dstFormat;
SkAssertResult(GrPixelConfigToVkFormat(dstConfig, &dstFormat));
VkFormat srcFormat;
SkAssertResult(GrPixelConfigToVkFormat(srcConfig, &srcFormat));
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
!this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
return false;
}
// We cannot blit images that are multisampled. Will need to figure out if we can blit the
// resolved msaa though.
if (dstSampleCnt > 1 || srcSampleCnt > 1) {
return false;
}
if (dstHasYcbcr || srcHasYcbcr) {
return false;
}
return true;
}
bool GrVkCaps::canCopyAsResolve(GrPixelConfig dstConfig, int dstSampleCnt, bool dstHasYcbcr,
GrPixelConfig srcConfig, int srcSampleCnt, bool srcHasYcbcr) const {
// The src surface must be multisampled.
if (srcSampleCnt <= 1) {
return false;
}
// The dst must not be multisampled.
if (dstSampleCnt > 1) {
return false;
}
// Surfaces must have the same format.
if (dstConfig != srcConfig) {
return false;
}
if (dstHasYcbcr || srcHasYcbcr) {
return false;
}
return true;
}
bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
const SkIRect& srcRect, const SkIPoint& dstPoint) const {
if (src->isProtected() && !dst->isProtected()) {
return false;
}
GrPixelConfig dstConfig = dst->config();
GrPixelConfig srcConfig = src->config();
// TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
// PromiseImage which won't get instantiated right away. Does this need a similar thing like the
// tracking of external or rectangle textures in GL? For now we don't create linear textures
// internally, and I don't believe anyone is wrapping them.
bool srcIsLinear = false;
bool dstIsLinear = false;
int dstSampleCnt = 0;
int srcSampleCnt = 0;
if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
// Copying to or from render targets that wrap a secondary command buffer is not allowed
// since they would require us to know the VkImage, which we don't have, as well as need us
// to stop and start the VkRenderPass which we don't have access to.
if (rtProxy->wrapsVkSecondaryCB()) {
return false;
}
dstSampleCnt = rtProxy->numSamples();
}
if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
// Copying to or from render targets that wrap a secondary command buffer is not allowed
// since they would require us to know the VkImage, which we don't have, as well as need us
// to stop and start the VkRenderPass which we don't have access to.
if (rtProxy->wrapsVkSecondaryCB()) {
return false;
}
srcSampleCnt = rtProxy->numSamples();
}
SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
bool dstHasYcbcr = false;
if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
if (ycbcr->isValid()) {
dstHasYcbcr = true;
}
}
bool srcHasYcbcr = false;
if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
if (ycbcr->isValid()) {
srcHasYcbcr = true;
}
}
return this->canCopyImage(dstConfig, dstSampleCnt, dstHasYcbcr,
srcConfig, srcSampleCnt, srcHasYcbcr) ||
this->canCopyAsBlit(dstConfig, dstSampleCnt, dstIsLinear, dstHasYcbcr,
srcConfig, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
this->canCopyAsResolve(dstConfig, dstSampleCnt, dstHasYcbcr,
srcConfig, srcSampleCnt, srcHasYcbcr);
}
template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
VkStructureType type) {
// All Vulkan structs that could be part of the features chain will start with the
// structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
// so we can get access to the pNext for the next struct.
struct CommonVulkanHeader {
VkStructureType sType;
void* pNext;
};
void* pNext = features.pNext;
while (pNext) {
CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
if (header->sType == type) {
return static_cast<T*>(pNext);
}
pNext = header->pNext;
}
return nullptr;
}
void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
GrProtected isProtected) {
VkPhysicalDeviceProperties properties;
GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
VkPhysicalDeviceMemoryProperties memoryProperties;
GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
SkASSERT(physicalDeviceVersion <= properties.apiVersion);
if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
fSupportsSwapchain = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
fSupportsPhysicalDeviceProperties2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
fSupportsMemoryRequirements2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
fSupportsBindMemory2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
fSupportsMaintenance1 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
fSupportsMaintenance2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
fSupportsMaintenance3 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
this->supportsMemoryRequirements2())) {
fSupportsDedicatedAllocation = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
this->supportsPhysicalDeviceProperties2() &&
extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
this->supportsDedicatedAllocation())) {
fSupportsExternalMemory = true;
}
#ifdef SK_BUILD_FOR_ANDROID
// Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
// do we don't explicitly require it here even the spec says it is required.
if (extensions.hasExtension(
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
/* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
this->supportsExternalMemory() &&
this->supportsBindMemory2()) {
fSupportsAndroidHWBExternalMemory = true;
fSupportsAHardwareBufferImages = true;
}
#endif
auto ycbcrFeatures =
get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
features,
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
fSupportsAndroidHWBExternalMemory &&
(physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
this->supportsMaintenance1() &&
this->supportsBindMemory2() &&
this->supportsMemoryRequirements2() &&
this->supportsPhysicalDeviceProperties2()))) {
fSupportsYcbcrConversion = true;
}
// We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
// will return a key of 0.
fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
if ((isProtected == GrProtected::kYes) &&
(physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
fSupportsProtectedMemory = true;
fAvoidUpdateBuffers = true;
fShouldAlwaysUseDedicatedImageMemory = true;
}
this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
this->initShaderCaps(properties, features);
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
#if defined(SK_CPU_X86)
// We need to do this before initing the config table since it uses fSRGBSupport
if (kImagination_VkVendor == properties.vendorID) {
fSRGBSupport = false;
}
#endif
}
if (kQualcomm_VkVendor == properties.vendorID) {
// A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a
// scissored clear.
// On NVIDIA and Intel, the discard load followed by clear is faster.
// TODO: Evaluate on ARM, Imagination, and ATI.
fPreferFullscreenClears = true;
}
if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
// On Qualcomm and ARM mapping a gpu buffer and doing both reads and writes to it is slow.
// Thus for index and vertex buffers we will force to use a cpu side buffer and then copy
// the whole buffer up to the gpu.
fBufferMapThreshold = SK_MaxS32;
}
if (kQualcomm_VkVendor == properties.vendorID) {
// On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
// even for small sizes.
fAvoidUpdateBuffers = true;
}
if (kARM_VkVendor == properties.vendorID) {
// ARM seems to do better with more fine triangles as opposed to using the sample mask.
// (At least in our current round rect op.)
fPreferTrianglesOverSampleMask = true;
}
this->initFormatTable(vkInterface, physDev, properties);
this->initStencilFormat(vkInterface, physDev);
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
this->applyDriverCorrectnessWorkarounds(properties);
}
this->applyOptionsOverrides(contextOptions);
fShaderCaps->applyOptionsOverrides(contextOptions);
}
void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
if (kQualcomm_VkVendor == properties.vendorID) {
fMustDoCopiesFromOrigin = true;
// Transfer doesn't support this workaround.
fTransferBufferSupport = false;
}
#if defined(SK_BUILD_FOR_WIN)
if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
fMustSleepOnTearDown = true;
}
#elif defined(SK_BUILD_FOR_ANDROID)
if (kImagination_VkVendor == properties.vendorID) {
fMustSleepOnTearDown = true;
}
#endif
#if defined(SK_BUILD_FOR_ANDROID)
// Protected memory features have problems in Android P and earlier.
if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
char androidAPIVersion[PROP_VALUE_MAX];
int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersion);
if (strLength == 0 || atoi(androidAPIVersion) <= 28) {
fSupportsProtectedMemory = false;
}
}
#endif
// AMD seems to have issues binding new VkPipelines inside a secondary command buffer.
// Current workaround is to use a different secondary command buffer for each new VkPipeline.
if (kAMD_VkVendor == properties.vendorID) {
fNewCBOnPipelineChange = true;
}
// On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
if (kARM_VkVendor == properties.vendorID) {
fShouldAlwaysUseDedicatedImageMemory = true;
}
////////////////////////////////////////////////////////////////////////////
// GrCaps workarounds
////////////////////////////////////////////////////////////////////////////
if (kARM_VkVendor == properties.vendorID) {
fInstanceAttribSupport = false;
fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
}
// AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
if (kAMD_VkVendor == properties.vendorID) {
fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32);
}
////////////////////////////////////////////////////////////////////////////
// GrShaderCaps workarounds
////////////////////////////////////////////////////////////////////////////
if (kImagination_VkVendor == properties.vendorID) {
fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
}
}
int get_max_sample_count(VkSampleCountFlags flags) {
SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT);
if (!(flags & VK_SAMPLE_COUNT_2_BIT)) {
return 0;
}
if (!(flags & VK_SAMPLE_COUNT_4_BIT)) {
return 2;
}
if (!(flags & VK_SAMPLE_COUNT_8_BIT)) {
return 4;
}
if (!(flags & VK_SAMPLE_COUNT_16_BIT)) {
return 8;
}
if (!(flags & VK_SAMPLE_COUNT_32_BIT)) {
return 16;
}
if (!(flags & VK_SAMPLE_COUNT_64_BIT)) {
return 32;
}
return 64;
}
void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceMemoryProperties& memoryProperties,
const VkPhysicalDeviceFeatures2& features,
const GrVkExtensions& extensions) {
// So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
// need for us ever to support that amount, and it makes tests which tests all the vertex
// attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
// we ever find that need.
static const uint32_t kMaxVertexAttributes = 64;
fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
// We could actually query and get a max size for each config, however maxImageDimension2D will
// give the minimum max size across all configs. So for simplicity we will use that for now.
fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
fMaxTextureSize = SkTMin(fMaxTextureSize, 4096);
}
// Our render targets are always created with textures as the color
// attachment, hence this min:
fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize);
// TODO: check if RT's larger than 4k incur a performance cost on ARM.
fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
// Assuming since we will always map in the end to upload the data we might as well just map
// from the get go. There is no hard data to suggest this is faster or slower.
fBufferMapThreshold = 0;
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
fOversizedStencilSupport = true;
if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
this->supportsPhysicalDeviceProperties2()) {
VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
blendProps.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
blendProps.pNext = nullptr;
VkPhysicalDeviceProperties2 props;
props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
props.pNext = &blendProps;
GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
if (blendProps.advancedBlendAllOperations == VK_TRUE) {
fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
auto blendFeatures =
get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
features,
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
} else {
// TODO: Currently non coherent blends are not supported in our vulkan backend. They
// require us to support self dependencies in our render passes.
// fBlendEquationSupport = kAdvanced_BlendEquationSupport;
}
}
}
}
void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceFeatures2& features) {
GrShaderCaps* shaderCaps = fShaderCaps.get();
shaderCaps->fVersionDeclString = "#version 330\n";
// Vulkan is based off ES 3.0 so the following should all be supported
shaderCaps->fUsesPrecisionModifiers = true;
shaderCaps->fFlatInterpolationSupport = true;
// Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
// to be true with Vulkan as well.
shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
// GrShaderCaps
shaderCaps->fShaderDerivativeSupport = true;
// FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
// shaderCaps->fGeometryShaderSupport =
// shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
shaderCaps->fIntegerSupport = true;
shaderCaps->fVertexIDSupport = true;
shaderCaps->fFPManipulationSupport = true;
// Assume the minimum precisions mandated by the SPIR-V spec.
shaderCaps->fFloatIs32Bits = true;
shaderCaps->fHalfIs32Bits = false;
shaderCaps->fMaxFragmentSamplers = SkTMin(
SkTMin(properties.limits.maxPerStageDescriptorSampledImages,
properties.limits.maxPerStageDescriptorSamplers),
(uint32_t)INT_MAX);
}
bool stencil_format_supported(const GrVkInterface* interface,
VkPhysicalDevice physDev,
VkFormat format) {
VkFormatProperties props;
memset(&props, 0, sizeof(VkFormatProperties));
GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
}
void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
// List of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least. We are guaranteed to have either
// VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT
// can optionally have 24 unused bits at the end so we assume the total bits is 64.
static const StencilFormat
// internal Format stencil bits total bits packed?
gS8 = { VK_FORMAT_S8_UINT, 8, 8, false },
gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true },
gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true };
if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
fPreferredStencilFormat = gS8;
} else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
fPreferredStencilFormat = gD24S8;
} else {
SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
fPreferredStencilFormat = gD32S8;
}
}
static bool format_is_srgb(VkFormat format) {
SkASSERT(GrVkFormatIsSupported(format));
switch (format) {
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_B8G8R8A8_SRGB:
return true;
default:
return false;
}
}
// These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
// frequently used to least to improve look up times in arrays.
static constexpr VkFormat kVkFormats[] = {
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R8_UNORM,
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_R5G6B5_UNORM_PACK16,
VK_FORMAT_R16G16B16A16_SFLOAT,
VK_FORMAT_R16_SFLOAT,
VK_FORMAT_R8G8B8_UNORM,
VK_FORMAT_R8G8_UNORM,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_B4G4R4A4_UNORM_PACK16,
VK_FORMAT_R4G4B4A4_UNORM_PACK16,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R8G8B8A8_SRGB,
VK_FORMAT_B8G8R8A8_SRGB,
VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
VK_FORMAT_R16_UNORM,
VK_FORMAT_R16G16_UNORM,
// Experimental (for Y416 and mutant P016/P010)
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16_SFLOAT,
};
const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
"Size of VkFormats array must match static value in header");
for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
if (kVkFormats[i] == format) {
return fFormatTable[i];
}
}
SK_ABORT("Invalid VkFormat");
static const FormatInfo kInvalidFormat;
return kInvalidFormat;
}
void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties) {
static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
"Size of VkFormats array must match static value in header");
for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
VkFormat format = kVkFormats[i];
if (!format_is_srgb(format) || fSRGBSupport) {
fFormatTable[i].init(interface, physDev, properties, format);
}
}
}
void GrVkCaps::FormatInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
*flags = *flags | kTextureable_Flag;
// Ganesh assumes that all renderable surfaces are also texturable
if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
*flags = *flags | kRenderable_Flag;
}
}
if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
*flags = *flags | kBlitSrc_Flag;
}
if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
*flags = *flags | kBlitDst_Flag;
}
}
void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& physProps,
VkFormat format) {
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkImageFormatProperties properties;
GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
format,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL,
usage,
0, // createFlags
&properties));
VkSampleCountFlags flags = properties.sampleCounts;
if (flags & VK_SAMPLE_COUNT_1_BIT) {
fColorSampleCounts.push_back(1);
}
if (kImagination_VkVendor == physProps.vendorID) {
// MSAA does not work on imagination
return;
}
if (flags & VK_SAMPLE_COUNT_2_BIT) {
fColorSampleCounts.push_back(2);
}
if (flags & VK_SAMPLE_COUNT_4_BIT) {
fColorSampleCounts.push_back(4);
}
if (flags & VK_SAMPLE_COUNT_8_BIT) {
fColorSampleCounts.push_back(8);
}
if (flags & VK_SAMPLE_COUNT_16_BIT) {
fColorSampleCounts.push_back(16);
}
if (flags & VK_SAMPLE_COUNT_32_BIT) {
fColorSampleCounts.push_back(32);
}
if (flags & VK_SAMPLE_COUNT_64_BIT) {
fColorSampleCounts.push_back(64);
}
}
void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties,
VkFormat format) {
VkFormatProperties props;
memset(&props, 0, sizeof(VkFormatProperties));
GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
InitConfigFlags(props.linearTilingFeatures, &fLinearFlags);
InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags);
if (fOptimalFlags & kRenderable_Flag) {
this->initSampleCounts(interface, physDev, properties, format);
}
}
bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
if (!format.getVkFormat()) {
return false;
}
return format_is_srgb(*format.getVkFormat());
}
bool GrVkCaps::isFormatTexturable(SkColorType, const GrBackendFormat& format) const {
if (!format.getVkFormat()) {
return false;
}
return this->isFormatTexturable(*format.getVkFormat());
}
bool GrVkCaps::isFormatTexturable(VkFormat format) const {
if (!GrVkFormatIsSupported(format)) {
return false;
}
const FormatInfo& info = this->getFormatInfo(format);
return SkToBool(FormatInfo::kTextureable_Flag & info.fOptimalFlags);
}
bool GrVkCaps::isConfigTexturable(GrPixelConfig config) const {
VkFormat format;
if (!GrPixelConfigToVkFormat(config, &format)) {
return false;
}
return this->isFormatTexturable(format);
}
bool GrVkCaps::isFormatRenderable(VkFormat format) const {
return this->maxRenderTargetSampleCount(format) > 0;
}
int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
SkColorType, const GrBackendFormat& format) const {
if (!format.getVkFormat()) {
return 0;
}
return this->getRenderTargetSampleCount(requestedCount, *format.getVkFormat());
}
int GrVkCaps::getRenderTargetSampleCount(int requestedCount, GrPixelConfig config) const {
// Currently we don't allow RGB_888X to be renderable because we don't have a way to handle
// blends that reference dst alpha when the values in the dst alpha channel are uninitialized.
if (config == kRGB_888X_GrPixelConfig) {
return 0;
}
VkFormat format;
if (!GrPixelConfigToVkFormat(config, &format)) {
return 0;
}
return this->getRenderTargetSampleCount(requestedCount, format);
}
int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
requestedCount = SkTMax(1, requestedCount);
const FormatInfo& info = this->getFormatInfo(format);
int count = info.fColorSampleCounts.count();
if (!count) {
return 0;
}
if (1 == requestedCount) {
SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
return 1;
}
for (int i = 0; i < count; ++i) {
if (info.fColorSampleCounts[i] >= requestedCount) {
return info.fColorSampleCounts[i];
}
}
return 0;
}
int GrVkCaps::maxRenderTargetSampleCount(SkColorType, const GrBackendFormat& format) const {
if (!format.getVkFormat()) {
return 0;
}
return this->maxRenderTargetSampleCount(*format.getVkFormat());
}
int GrVkCaps::maxRenderTargetSampleCount(GrPixelConfig config) const {
// Currently we don't allow RGB_888X to be renderable because we don't have a way to handle
// blends that reference dst alpha when the values in the dst alpha channel are uninitialized.
if (config == kRGB_888X_GrPixelConfig) {
return 0;
}
VkFormat format;
if (!GrPixelConfigToVkFormat(config, &format)) {
return 0;
}
return this->maxRenderTargetSampleCount(format);
}
int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
const FormatInfo& info = this->getFormatInfo(format);
const auto& table = info.fColorSampleCounts;
if (!table.count()) {
return 0;
}
return table[table.count() - 1];
}
GrCaps::ReadFlags GrVkCaps::surfaceSupportsReadPixels(const GrSurface* surface) const {
if (surface->isProtected()) {
return kProtected_ReadFlag;
}
if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
// We can't directly read from a VkImage that has a ycbcr sampler.
if (tex->ycbcrConversionInfo().isValid()) {
return kRequiresCopy_ReadFlag;
}
}
return kSupported_ReadFlag;
}
bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
if (auto rt = surface->asRenderTarget()) {
return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
}
// We can't write to a texture that has a ycbcr sampler.
if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
// We can't directly read from a VkImage that has a ycbcr sampler.
if (tex->ycbcrConversionInfo().isValid()) {
return false;
}
}
return true;
}
static GrPixelConfig validate_image_info(VkFormat format, SkColorType ct, bool hasYcbcrConversion) {
if (format == VK_FORMAT_UNDEFINED) {
// If the format is undefined then it is only valid as an external image which requires that
// we have a valid VkYcbcrConversion.
if (hasYcbcrConversion) {
// We don't actually care what the color type or config are since we won't use those
// values for external textures. However, for read pixels we will draw to a non ycbcr
// texture of this config so we set RGBA here for that.
return kRGBA_8888_GrPixelConfig;
} else {
return kUnknown_GrPixelConfig;
}
}
if (hasYcbcrConversion) {
// We only support having a ycbcr conversion for external images.
return kUnknown_GrPixelConfig;
}
switch (ct) {
case kUnknown_SkColorType:
break;
case kAlpha_8_SkColorType:
if (VK_FORMAT_R8_UNORM == format) {
return kAlpha_8_as_Red_GrPixelConfig;
}
break;
case kRGB_565_SkColorType:
if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) {
return kRGB_565_GrPixelConfig;
}
break;
case kARGB_4444_SkColorType:
if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format ||
VK_FORMAT_R4G4B4A4_UNORM_PACK16 == format) {
return kRGBA_4444_GrPixelConfig;
}
break;
case kRGBA_8888_SkColorType:
if (VK_FORMAT_R8G8B8A8_UNORM == format) {
return kRGBA_8888_GrPixelConfig;
} else if (VK_FORMAT_R8G8B8A8_SRGB == format) {
return kSRGBA_8888_GrPixelConfig;
}
break;
case kRGB_888x_SkColorType:
if (VK_FORMAT_R8G8B8_UNORM == format) {
return kRGB_888_GrPixelConfig;
}
if (VK_FORMAT_R8G8B8A8_UNORM == format) {
return kRGB_888X_GrPixelConfig;
}
break;
case kBGRA_8888_SkColorType:
if (VK_FORMAT_B8G8R8A8_UNORM == format) {
return kBGRA_8888_GrPixelConfig;
} else if (VK_FORMAT_B8G8R8A8_SRGB == format) {
return kSBGRA_8888_GrPixelConfig;
}
break;
case kRGBA_1010102_SkColorType:
if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) {
return kRGBA_1010102_GrPixelConfig;
}
break;
case kRGB_101010x_SkColorType:
return kUnknown_GrPixelConfig;
case kGray_8_SkColorType:
if (VK_FORMAT_R8_UNORM == format) {
return kGray_8_as_Red_GrPixelConfig;
}
break;
case kRGBA_F16Norm_SkColorType:
if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
return kRGBA_half_Clamped_GrPixelConfig;
}
break;
case kRGBA_F16_SkColorType:
if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
return kRGBA_half_GrPixelConfig;
}
break;
case kRGBA_F32_SkColorType:
if (VK_FORMAT_R32G32B32A32_SFLOAT == format) {
return kRGBA_float_GrPixelConfig;
}
break;
}
return kUnknown_GrPixelConfig;
}
GrPixelConfig GrVkCaps::validateBackendRenderTarget(const GrBackendRenderTarget& rt,
SkColorType ct) const {
GrVkImageInfo imageInfo;
if (!rt.getVkImageInfo(&imageInfo)) {
return kUnknown_GrPixelConfig;
}
return validate_image_info(imageInfo.fFormat, ct, imageInfo.fYcbcrConversionInfo.isValid());
}
GrPixelConfig GrVkCaps::getConfigFromBackendFormat(const GrBackendFormat& format,
SkColorType ct) const {
const VkFormat* vkFormat = format.getVkFormat();
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
if (!vkFormat || !ycbcrInfo) {
return kUnknown_GrPixelConfig;
}
return validate_image_info(*vkFormat, ct, ycbcrInfo->isValid());
}
static GrPixelConfig get_yuva_config(VkFormat vkFormat) {
switch (vkFormat) {
case VK_FORMAT_R8_UNORM:
return kAlpha_8_as_Red_GrPixelConfig;
case VK_FORMAT_R8G8B8A8_UNORM:
return kRGBA_8888_GrPixelConfig;
case VK_FORMAT_R8G8B8_UNORM:
return kRGB_888_GrPixelConfig;
case VK_FORMAT_R8G8_UNORM:
return kRG_88_GrPixelConfig;
case VK_FORMAT_B8G8R8A8_UNORM:
return kBGRA_8888_GrPixelConfig;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
return kRGBA_1010102_GrPixelConfig;
case VK_FORMAT_R16_UNORM:
return kR_16_GrPixelConfig;
case VK_FORMAT_R16G16_UNORM:
return kRG_1616_GrPixelConfig;
// Experimental (for Y416 and mutant P016/P010)
case VK_FORMAT_R16G16B16A16_UNORM:
return kRGBA_16161616_GrPixelConfig;
case VK_FORMAT_R16G16_SFLOAT:
return kRG_half_GrPixelConfig;
default:
return kUnknown_GrPixelConfig;
}
}
GrPixelConfig GrVkCaps::getYUVAConfigFromBackendFormat(const GrBackendFormat& format) const {
const VkFormat* vkFormat = format.getVkFormat();
if (!vkFormat) {
return kUnknown_GrPixelConfig;
}
return get_yuva_config(*vkFormat);
}
GrBackendFormat GrVkCaps::getBackendFormatFromGrColorType(GrColorType ct,
GrSRGBEncoded srgbEncoded) const {
GrPixelConfig config = GrColorTypeToPixelConfig(ct, srgbEncoded);
if (config == kUnknown_GrPixelConfig) {
return GrBackendFormat();
}
VkFormat format;
if (!GrPixelConfigToVkFormat(config, &format)) {
return GrBackendFormat();
}
return GrBackendFormat::MakeVk(format);
}
#ifdef SK_DEBUG
static bool format_color_type_valid_pair(VkFormat vkFormat, GrColorType colorType) {
switch (colorType) {
case GrColorType::kUnknown:
return false;
case GrColorType::kAlpha_8:
return VK_FORMAT_R8_UNORM == vkFormat;
case GrColorType::kBGR_565:
return VK_FORMAT_R5G6B5_UNORM_PACK16 == vkFormat;
case GrColorType::kABGR_4444:
return VK_FORMAT_B4G4R4A4_UNORM_PACK16 == vkFormat ||
VK_FORMAT_R4G4B4A4_UNORM_PACK16 == vkFormat;
case GrColorType::kRGBA_8888:
return VK_FORMAT_R8G8B8A8_UNORM == vkFormat || VK_FORMAT_R8G8B8A8_SRGB == vkFormat;
case GrColorType::kRGB_888x:
return VK_FORMAT_R8G8B8_UNORM == vkFormat || VK_FORMAT_R8G8B8A8_UNORM == vkFormat;
case GrColorType::kRG_88:
return VK_FORMAT_R8G8_UNORM == vkFormat;
case GrColorType::kBGRA_8888:
return VK_FORMAT_B8G8R8A8_UNORM == vkFormat || VK_FORMAT_B8G8R8A8_SRGB == vkFormat;
case GrColorType::kRGBA_1010102:
return VK_FORMAT_A2B10G10R10_UNORM_PACK32 == vkFormat;
case GrColorType::kGray_8:
return VK_FORMAT_R8_UNORM == vkFormat;
case GrColorType::kAlpha_F16:
return VK_FORMAT_R16_SFLOAT == vkFormat;
case GrColorType::kRGBA_F16:
return VK_FORMAT_R16G16B16A16_SFLOAT == vkFormat;
case GrColorType::kRGBA_F16_Clamped:
return VK_FORMAT_R16G16B16A16_SFLOAT == vkFormat;
case GrColorType::kRG_F32:
return VK_FORMAT_R32G32_SFLOAT == vkFormat;
case GrColorType::kRGBA_F32:
return VK_FORMAT_R32G32B32A32_SFLOAT == vkFormat;
case GrColorType::kRGB_ETC1:
return VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK == vkFormat;
case GrColorType::kR_16:
return VK_FORMAT_R16_UNORM == vkFormat;
case GrColorType::kRG_1616:
return VK_FORMAT_R16G16_UNORM == vkFormat;
// Experimental (for Y416 and mutant P016/P010)
case GrColorType::kRGBA_16161616:
return VK_FORMAT_R16G16B16A16_UNORM == vkFormat;
case GrColorType::kRG_F16:
return VK_FORMAT_R16G16_SFLOAT == vkFormat;
}
SK_ABORT("Unknown color type");
return false;
}
#endif
static GrSwizzle get_swizzle(const GrBackendFormat& format, GrColorType colorType,
bool forOutput) {
SkASSERT(format.getVkFormat());
VkFormat vkFormat = *format.getVkFormat();
SkASSERT(format_color_type_valid_pair(vkFormat, colorType));
switch (colorType) {
case GrColorType::kAlpha_8: // fall through
case GrColorType::kAlpha_F16:
if (forOutput) {
return GrSwizzle::AAAA();
} else {
return GrSwizzle::RRRR();
}
case GrColorType::kGray_8:
if (!forOutput) {
return GrSwizzle::RRRA();
}
break;
case GrColorType::kABGR_4444:
if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == vkFormat) {
return GrSwizzle::BGRA();
}
break;
case GrColorType::kRGB_888x:
if (!forOutput) {
return GrSwizzle::RGB1();
}
default:
return GrSwizzle::RGBA();
}
return GrSwizzle::RGBA();
}
GrSwizzle GrVkCaps::getTextureSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
return get_swizzle(format, colorType, false);
}
GrSwizzle GrVkCaps::getOutputSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
return get_swizzle(format, colorType, true);
}
size_t GrVkCaps::onTransferFromOffsetAlignment(GrColorType bufferColorType) const {
// This GrColorType has 32 bpp but the Vulkan pixel format we use for with may have 24bpp
// (VK_FORMAT_R8G8B8_...) or may be 32 bpp. We don't support post transforming the pixel data
// for transfer-from currently and don't want to have to pass info about the src surface here.
if (bufferColorType == GrColorType::kRGB_888x) {
return false;
}
size_t bpp = GrColorTypeBytesPerPixel(bufferColorType);
// The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
switch (bpp & 0b11) {
// bpp is already a multiple of 4.
case 0: return bpp;
// bpp is a multiple of 2 but not 4.
case 2: return 2 * bpp;
// bpp is not a multiple of 2.
default: return 4 * bpp;
}
}