blob: f382be8b12f3aa4e6d2ece5f1e984099ebc452c8 [file] [log] [blame]
* Copyright 2015 Google Inc.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
#ifndef GrResourceProvider_DEFINED
#define GrResourceProvider_DEFINED
#include "include/gpu/GrContextOptions.h"
#include "include/private/SkImageInfoPriv.h"
#include "src/core/SkScalerContext.h"
#include "src/gpu/GrGpuBuffer.h"
#include "src/gpu/GrResourceCache.h"
class GrBackendRenderTarget;
class GrBackendSemaphore;
class GrBackendTexture;
class GrGpu;
class GrPath;
class GrRenderTarget;
class GrResourceProviderPriv;
class GrSemaphore;
class GrSingleOwner;
class GrStencilAttachment;
class GrTexture;
struct GrVkDrawableInfo;
class GrStyle;
class SkDescriptor;
class SkPath;
class SkTypeface;
* A factory for arbitrary resource types. This class is intended for use within the Gr code base.
* Some members force callers to make a flags (pendingIO) decision. This can be relaxed once
* is fixed.
class GrResourceProvider {
/** These flags govern which scratch resources we are allowed to return */
enum class Flags {
kNone = 0x0,
/** If the caller intends to do direct reads/writes to/from the CPU then this flag must be
* set when accessing resources during a GrOpList flush. This includes the execution of
* GrOp objects. The reason is that these memory operations are done immediately and
* will occur out of order WRT the operations being flushed.
* Make this automatic:
kNoPendingIO = 0x1,
GrResourceProvider(GrGpu*, GrResourceCache*, GrSingleOwner*);
* Finds a resource in the cache, based on the specified key. Prior to calling this, the caller
* must be sure that if a resource of exists in the cache with the given unique key then it is
* of type T.
template <typename T = GrGpuResource>
typename std::enable_if<std::is_base_of<GrGpuResource, T>::value, sk_sp<T>>::type
findByUniqueKey(const GrUniqueKey& key) {
return sk_sp<T>(static_cast<T*>(this->findResourceByUniqueKey(key).release()));
// Textures
* Finds a texture that approximately matches the descriptor. Will be at least as large in width
* and height as desc specifies. If desc specifies that the texture should be a render target
* then result will be a render target. Format and sample count will always match the request.
* The contents of the texture are undefined.
sk_sp<GrTexture> createApproxTexture(const GrSurfaceDesc&, Flags);
/** Create an exact fit texture with no initial data to upload.
sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted, Flags = Flags::kNone);
sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted, const GrMipLevel texels[],
int mipLevelCount);
// Create a potentially loose fit texture with the provided data
sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted, SkBackingFit,
const GrMipLevel&, Flags);
// Wrapped Backend Surfaces
* Wraps an existing texture with a GrTexture object.
* GrIOType must either be kRead or kRW. kRead blocks any operations that would modify the
* pixels (e.g. dst for a copy, regenerating MIP levels, write pixels).
* OpenGL: if the object is a texture Gr may change its GL texture params
* when it is drawn.
* @return GrTexture object or NULL on failure.
sk_sp<GrTexture> wrapBackendTexture(const GrBackendTexture& tex, GrWrapOwnership,
GrWrapCacheable, GrIOType);
* This makes the backend texture be renderable. If sampleCnt is > 1 and the underlying API
* uses separate MSAA render buffers then a MSAA render buffer is created that resolves
* to the texture.
sk_sp<GrTexture> wrapRenderableBackendTexture(const GrBackendTexture& tex,
int sampleCnt,
* Wraps an existing render target with a GrRenderTarget object. It is
* similar to wrapBackendTexture but can be used to draw into surfaces
* that are not also textures (e.g. FBO 0 in OpenGL, or an MSAA buffer that
* the client will resolve to a texture). Currently wrapped render targets
* always use the kBorrow_GrWrapOwnership and GrWrapCacheable::kNo semantics.
* @return GrRenderTarget object or NULL on failure.
sk_sp<GrRenderTarget> wrapBackendRenderTarget(const GrBackendRenderTarget&);
sk_sp<GrRenderTarget> wrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo&,
const GrVkDrawableInfo&);
static const uint32_t kMinScratchTextureSize;
* Either finds and refs, or creates a static buffer with the given parameters and contents.
* @param intendedType hint to the graphics subsystem about what the buffer will be used for.
* @param size minimum size of buffer to return.
* @param data optional data with which to initialize the buffer.
* @param key Key to be assigned to the buffer.
* @return The buffer if successful, otherwise nullptr.
sk_sp<const GrGpuBuffer> findOrMakeStaticBuffer(GrGpuBufferType intendedType, size_t size,
const void* data, const GrUniqueKey& key);
* Either finds and refs, or creates an index buffer with a repeating pattern for drawing
* contiguous vertices of a repeated mesh. If the return is non-null, the caller owns a ref on
* the returned GrBuffer.
* @param pattern the pattern of indices to repeat
* @param patternSize size in bytes of the pattern
* @param reps number of times to repeat the pattern
* @param vertCount number of vertices the pattern references
* @param key Key to be assigned to the index buffer.
* @return The index buffer if successful, otherwise nullptr.
sk_sp<const GrGpuBuffer> findOrCreatePatternedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
const GrUniqueKey& key) {
if (auto buffer = this->findByUniqueKey<const GrGpuBuffer>(key)) {
return buffer;
return this->createPatternedIndexBuffer(pattern, patternSize, reps, vertCount, &key);
* Returns an index buffer that can be used to render quads.
* Six indices per quad: 0, 1, 2, 2, 1, 3, etc.
* The max number of quads is the buffer's index capacity divided by 6.
* Draw with GrPrimitiveType::kTriangles
* @ return the quad index buffer
sk_sp<const GrGpuBuffer> refQuadIndexBuffer() {
if (!fQuadIndexBuffer) {
fQuadIndexBuffer = this->createQuadIndexBuffer();
return fQuadIndexBuffer;
static int QuadCountOfQuadBuffer();
* Factories for GrPath objects. It's an error to call these if path rendering
* is not supported.
sk_sp<GrPath> createPath(const SkPath&, const GrStyle&);
* Returns a buffer.
* @param size minimum size of buffer to return.
* @param intendedType hint to the graphics subsystem about what the buffer will be used for.
* @param GrAccessPattern hint to the graphics subsystem about how the data will be accessed.
* @param flags see Flags enum.
* @param data optional data with which to initialize the buffer.
* @return the buffer if successful, otherwise nullptr.
sk_sp<GrGpuBuffer> createBuffer(size_t size, GrGpuBufferType intendedType, GrAccessPattern,
const void* data = nullptr);
* If passed in render target already has a stencil buffer, return true. Otherwise attempt to
* attach one and return true on success.
bool attachStencilAttachment(GrRenderTarget* rt);
* Wraps an existing texture with a GrRenderTarget object. This is useful when the provided
* texture has a format that cannot be textured from by Skia, but we want to raster to it.
* The texture is wrapped as borrowed. The texture object will not be freed once the
* render target is destroyed.
* @return GrRenderTarget object or NULL on failure.
sk_sp<GrRenderTarget> wrapBackendTextureAsRenderTarget(const GrBackendTexture&,
int sampleCnt);
* Assigns a unique key to a resource. If the key is associated with another resource that
* association is removed and replaced by this resource.
void assignUniqueKeyToResource(const GrUniqueKey&, GrGpuResource*);
sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT makeSemaphore(bool isOwned = true);
enum class SemaphoreWrapType {
sk_sp<GrSemaphore> wrapBackendSemaphore(const GrBackendSemaphore&,
SemaphoreWrapType wrapType,
GrWrapOwnership = kBorrow_GrWrapOwnership);
void abandon() {
fCache = nullptr;
fGpu = nullptr;
uint32_t contextUniqueID() const { return fCache->contextUniqueID(); }
const GrCaps* caps() const { return fCaps.get(); }
bool overBudget() const { return fCache->overBudget(); }
inline GrResourceProviderPriv priv();
inline const GrResourceProviderPriv priv() const;
sk_sp<GrGpuResource> findResourceByUniqueKey(const GrUniqueKey&);
// Attempts to find a resource in the cache that exactly matches the GrSurfaceDesc. Failing that
// it returns null. If non-null, the resulting texture is always budgeted.
sk_sp<GrTexture> refScratchTexture(const GrSurfaceDesc&, Flags);
* Try to find an existing scratch texture that exactly matches 'desc'. If successful
* update the budgeting accordingly.
sk_sp<GrTexture> getExactScratch(const GrSurfaceDesc&, SkBudgeted, Flags);
GrResourceCache* cache() { return fCache; }
const GrResourceCache* cache() const { return fCache; }
friend class GrResourceProviderPriv;
// Method made available via GrResourceProviderPriv
GrGpu* gpu() { return fGpu; }
const GrGpu* gpu() const { return fGpu; }
bool isAbandoned() const {
SkASSERT(SkToBool(fGpu) == SkToBool(fCache));
return !SkToBool(fCache);
sk_sp<const GrGpuBuffer> createPatternedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
const GrUniqueKey* key);
sk_sp<const GrGpuBuffer> createQuadIndexBuffer();
GrResourceCache* fCache;
GrGpu* fGpu;
sk_sp<const GrCaps> fCaps;
sk_sp<const GrGpuBuffer> fQuadIndexBuffer;
// In debug builds we guard against improper thread handling
SkDEBUGCODE(mutable GrSingleOwner* fSingleOwner;)