blob: 77b58feac95fe46c26cd2c60e5ace503cfeb31cd [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrVkRenderTarget_DEFINED
#define GrVkRenderTarget_DEFINED
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/vk/GrVkImage.h"
#include "include/gpu/vk/GrVkTypes.h"
#include "src/gpu/vk/GrVkCommandBuffer.h"
#include "src/gpu/vk/GrVkRenderPass.h"
#include "src/gpu/vk/GrVkResourceProvider.h"
class GrVkFramebuffer;
class GrVkGpu;
class GrVkImageView;
class GrVkStencilAttachment;
struct GrVkImageInfo;
class GrVkRenderTarget: public GrRenderTarget, public virtual GrVkImage {
public:
static sk_sp<GrVkRenderTarget> MakeWrappedRenderTarget(GrVkGpu*, SkISize, int sampleCnt,
const GrVkImageInfo&,
sk_sp<GrBackendSurfaceMutableStateImpl>);
static sk_sp<GrVkRenderTarget> MakeSecondaryCBRenderTarget(GrVkGpu*, SkISize,
const GrVkDrawableInfo& vkInfo);
~GrVkRenderTarget() override;
GrBackendFormat backendFormat() const override { return this->getBackendFormat(); }
using SelfDependencyFlags = GrVkRenderPass::SelfDependencyFlags;
const GrVkFramebuffer* getFramebuffer(bool withStencil, SelfDependencyFlags);
const GrVkImageView* colorAttachmentView() const { return fColorAttachmentView; }
const GrManagedResource* msaaImageResource() const {
if (fMSAAImage) {
return fMSAAImage->fResource;
}
return nullptr;
}
GrVkImage* msaaImage() { return fMSAAImage.get(); }
const GrVkImageView* resolveAttachmentView() const { return fResolveAttachmentView; }
const GrManagedResource* stencilImageResource() const;
const GrVkImageView* stencilAttachmentView() const;
const GrVkRenderPass* getSimpleRenderPass(bool withStencil, SelfDependencyFlags);
GrVkResourceProvider::CompatibleRPHandle compatibleRenderPassHandle(bool withStencil,
SelfDependencyFlags);
const GrVkRenderPass* externalRenderPass() const;
bool wrapsSecondaryCommandBuffer() const { return fSecondaryCommandBuffer != VK_NULL_HANDLE; }
VkCommandBuffer getExternalSecondaryCommandBuffer() const {
return fSecondaryCommandBuffer;
}
bool canAttemptStencilAttachment() const override {
// We don't know the status of the stencil attachment for wrapped external secondary command
// buffers so we just assume we don't have one.
return !this->wrapsSecondaryCommandBuffer();
}
GrBackendRenderTarget getBackendRenderTarget() const override;
void getAttachmentsDescriptor(GrVkRenderPass::AttachmentsDescriptor* desc,
GrVkRenderPass::AttachmentFlags* flags,
bool withStencil) const;
// Reconstruct the render target attachment information from the programInfo. This includes
// which attachments the render target will have (color, stencil) and the attachments' formats
// and sample counts - cf. getAttachmentsDescriptor.
static void ReconstructAttachmentsDescriptor(const GrVkCaps& vkCaps,
const GrProgramInfo& programInfo,
GrVkRenderPass::AttachmentsDescriptor* desc,
GrVkRenderPass::AttachmentFlags* flags);
// So that we don't need to rewrite descriptor sets each time, we keep a cached input descriptor
// set on the the RT and simply reuse that descriptor set for this render target only. This call
// will not ref the GrVkDescriptorSet so the caller must manually ref it if it wants to keep it
// alive.
const GrVkDescriptorSet* inputDescSet(GrVkGpu*);
void addResources(GrVkCommandBuffer& commandBuffer, bool withStencil, SelfDependencyFlags);
void addWrappedGrSecondaryCommandBuffer(std::unique_ptr<GrVkSecondaryCommandBuffer> cmdBuffer) {
fGrSecondaryCommandBuffers.push_back(std::move(cmdBuffer));
}
protected:
GrVkRenderTarget(GrVkGpu* gpu,
SkISize dimensions,
int sampleCnt,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
const GrVkImageInfo& msaaInfo,
sk_sp<GrBackendSurfaceMutableStateImpl> msaaMutableState,
const GrVkImageView* colorAttachmentView,
const GrVkImageView* resolveAttachmentView,
GrBackendObjectOwnership);
GrVkRenderTarget(GrVkGpu* gpu,
SkISize dimensions,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
const GrVkImageView* colorAttachmentView,
GrBackendObjectOwnership);
void onAbandon() override;
void onRelease() override;
// This accounts for the texture's memory and any MSAA renderbuffer's memory.
size_t onGpuMemorySize() const override {
int numColorSamples = this->numSamples();
if (numColorSamples > 1) {
// Add one to account for the resolved VkImage.
numColorSamples += 1;
}
const GrCaps& caps = *this->getGpu()->caps();
return GrSurface::ComputeSize(caps, this->backendFormat(), this->dimensions(),
numColorSamples, GrMipmapped::kNo);
}
private:
GrVkRenderTarget(GrVkGpu* gpu,
SkISize dimensions,
int sampleCnt,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
const GrVkImageInfo& msaaInfo,
sk_sp<GrBackendSurfaceMutableStateImpl> msaaMutableState,
const GrVkImageView* colorAttachmentView,
const GrVkImageView* resolveAttachmentView);
GrVkRenderTarget(GrVkGpu* gpu,
SkISize dimensions,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
const GrVkImageView* colorAttachmentView);
GrVkRenderTarget(GrVkGpu* gpu,
SkISize dimensions,
const GrVkImageInfo& info,
sk_sp<GrBackendSurfaceMutableStateImpl> mutableState,
const GrVkRenderPass* renderPass,
VkCommandBuffer secondaryCommandBuffer);
void setFlags(const GrVkImageInfo& info);
GrVkGpu* getVkGpu() const;
const GrVkRenderPass* createSimpleRenderPass(bool withStencil, SelfDependencyFlags);
const GrVkFramebuffer* createFramebuffer(bool withStencil, SelfDependencyFlags);
bool completeStencilAttachment() override;
// In Vulkan we call the release proc after we are finished with the underlying
// GrVkImage::Resource object (which occurs after the GPU has finished all work on it).
void onSetRelease(sk_sp<GrRefCntedCallback> releaseHelper) override {
// Forward the release proc on to GrVkImage
this->setResourceRelease(std::move(releaseHelper));
}
void releaseInternalObjects();
const GrVkImageView* fColorAttachmentView;
std::unique_ptr<GrVkImage> fMSAAImage;
const GrVkImageView* fResolveAttachmentView;
// We can have a renderpass with and without stencil, input attachment dependency, and advanced
// blend dependency. All three being completely orthogonal. Thus we have a total of 8 types of
// render passes.
static constexpr int kNumCachedRenderPasses = 8;
const GrVkFramebuffer* fCachedFramebuffers[kNumCachedRenderPasses];
const GrVkRenderPass* fCachedRenderPasses[kNumCachedRenderPasses];
GrVkResourceProvider::CompatibleRPHandle fCompatibleRPHandles[kNumCachedRenderPasses];
const GrVkDescriptorSet* fCachedInputDescriptorSet = nullptr;
// If this render target wraps an external VkCommandBuffer, then this handle will be that
// VkCommandBuffer and not VK_NULL_HANDLE. In this case the render target will not be backed by
// an actual VkImage and will thus be limited in terms of what it can be used for.
VkCommandBuffer fSecondaryCommandBuffer = VK_NULL_HANDLE;
// When we wrap a secondary command buffer, we will record GrManagedResources onto it which need
// to be kept alive till the command buffer gets submitted and the GPU has finished. However, in
// the wrapped case, we don't know when the command buffer gets submitted and when it is
// finished on the GPU since the client is in charge of that. However, we do require that the
// client keeps the GrVkSecondaryCBDrawContext alive and call releaseResources on it once the
// GPU is finished all the work. Thus we can use this to manage the lifetime of our
// GrVkSecondaryCommandBuffers. By storing them on the GrVkRenderTarget, which is owned by the
// SkGpuDevice on the GrVkSecondaryCBDrawContext, we assure that the GrManagedResources held by
// the GrVkSecondaryCommandBuffer don't get deleted before they are allowed to.
SkTArray<std::unique_ptr<GrVkCommandBuffer>> fGrSecondaryCommandBuffers;
};
#endif