blob: 9ca1569de60f300dbe0d9b9d0ba1b28be19aef68 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMathPriv.h"
#include "SkFloatBits.h"
#include "SkFloatingPoint.h"
#include "SkScalar.h"
const uint32_t gIEEENotANumber = 0x7FFFFFFF;
const uint32_t gIEEEInfinity = 0x7F800000;
const uint32_t gIEEENegativeInfinity = 0xFF800000;
#define sub_shift(zeros, x, n) \
zeros -= n; \
x >>= n
int SkCLZ_portable(uint32_t x) {
if (x == 0) {
return 32;
}
int zeros = 31;
if (x & 0xFFFF0000) {
sub_shift(zeros, x, 16);
}
if (x & 0xFF00) {
sub_shift(zeros, x, 8);
}
if (x & 0xF0) {
sub_shift(zeros, x, 4);
}
if (x & 0xC) {
sub_shift(zeros, x, 2);
}
if (x & 0x2) {
sub_shift(zeros, x, 1);
}
return zeros;
}
///////////////////////////////////////////////////////////////////////////////
#define DIVBITS_ITER(k) \
case k: \
if (numer*2 >= denom) { \
numer = numer*2 - denom; \
result |= 1 << (k-1); \
} else { \
numer *= 2; \
}
// NOTE: if you're thinking of editing this method, consider replacing it with
// a simple shift and divide. This legacy method predated reliable hardware division.
int32_t SkDivBits(int32_t n, int32_t d, int shift_bias) {
SkASSERT(d != 0);
if (n == 0) {
return 0;
}
// Make numer and denom positive, and sign hold the resulting sign
// We'll be left-shifting numer, so it's important it's a uint32_t.
// We put denom in a uint32_t just to keep things simple.
int32_t sign = SkExtractSign(n ^ d);
#if defined(SK_SUPPORT_LEGACY_DIVBITS_UB)
// Blink layout tests are baselined to Clang optimizing through the UB.
int32_t numer = SkAbs32(n);
int32_t denom = SkAbs32(d);
#else
uint32_t numer = SkAbs32(n);
uint32_t denom = SkAbs32(d);
#endif
// It's probably a bug to use n or d below here.
int nbits = SkCLZ(numer) - 1;
int dbits = SkCLZ(denom) - 1;
int bits = shift_bias - nbits + dbits;
if (bits < 0) { // answer will underflow
return 0;
}
if (bits > 31) { // answer will overflow
return SkApplySign(SK_MaxS32, sign);
}
denom <<= dbits;
numer <<= nbits;
SkFixed result = 0;
// do the first one
if (numer >= denom) {
numer -= denom;
result = 1;
}
// Now fall into our switch statement if there are more bits to compute
if (bits > 0) {
// make room for the rest of the answer bits
result <<= bits;
switch (bits) {
DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29);
DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26);
DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23);
DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20);
DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17);
DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14);
DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11);
DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8);
DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5);
DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2);
// we merge these last two together, makes GCC make better ARM
default:
DIVBITS_ITER( 1);
}
}
if (result < 0) {
result = SK_MaxS32;
}
return SkApplySign(result, sign);
}
/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf
*/
int32_t SkSqrtBits(int32_t x, int count) {
SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30);
uint32_t root = 0;
uint32_t remHi = 0;
uint32_t remLo = x;
do {
root <<= 1;
remHi = (remHi<<2) | (remLo>>30);
remLo <<= 2;
uint32_t testDiv = (root << 1) + 1;
if (remHi >= testDiv) {
remHi -= testDiv;
root++;
}
} while (--count >= 0);
return root;
}
///////////////////////////////////////////////////////////////////////////////
float SkScalarSinCos(float radians, float* cosValue) {
float sinValue = sk_float_sin(radians);
if (cosValue) {
*cosValue = sk_float_cos(radians);
if (SkScalarNearlyZero(*cosValue)) {
*cosValue = 0;
}
}
if (SkScalarNearlyZero(sinValue)) {
sinValue = 0;
}
return sinValue;
}