|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkLineParameters_DEFINED | 
|  | #define SkLineParameters_DEFINED | 
|  |  | 
|  | #include "SkPathOpsCubic.h" | 
|  | #include "SkPathOpsLine.h" | 
|  | #include "SkPathOpsQuad.h" | 
|  |  | 
|  | // Sources | 
|  | // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 | 
|  | // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf | 
|  |  | 
|  | // This turns a line segment into a parameterized line, of the form | 
|  | // ax + by + c = 0 | 
|  | // When a^2 + b^2 == 1, the line is normalized. | 
|  | // The distance to the line for (x, y) is d(x,y) = ax + by + c | 
|  | // | 
|  | // Note that the distances below are not necessarily normalized. To get the true | 
|  | // distance, it's necessary to either call normalize() after xxxEndPoints(), or | 
|  | // divide the result of xxxDistance() by sqrt(normalSquared()) | 
|  |  | 
|  | class SkLineParameters { | 
|  | public: | 
|  |  | 
|  | bool cubicEndPoints(const SkDCubic& pts) { | 
|  | int endIndex = 1; | 
|  | cubicEndPoints(pts, 0, endIndex); | 
|  | if (dy() != 0) { | 
|  | return true; | 
|  | } | 
|  | if (dx() == 0) { | 
|  | cubicEndPoints(pts, 0, ++endIndex); | 
|  | SkASSERT(endIndex == 2); | 
|  | if (dy() != 0) { | 
|  | return true; | 
|  | } | 
|  | if (dx() == 0) { | 
|  | cubicEndPoints(pts, 0, ++endIndex);  // line | 
|  | SkASSERT(endIndex == 3); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // FIXME: after switching to round sort, remove bumping fA | 
|  | if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie | 
|  | return true; | 
|  | } | 
|  | // if cubic tangent is on x axis, look at next control point to break tie | 
|  | // control point may be approximate, so it must move significantly to account for error | 
|  | if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) { | 
|  | if (pts[0].fY > pts[endIndex].fY) { | 
|  | fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) | 
|  | } | 
|  | return true; | 
|  | } | 
|  | if (endIndex == 3) { | 
|  | return true; | 
|  | } | 
|  | SkASSERT(endIndex == 2); | 
|  | if (pts[0].fY > pts[3].fY) { | 
|  | fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void cubicEndPoints(const SkDCubic& pts, int s, int e) { | 
|  | fA = pts[s].fY - pts[e].fY; | 
|  | fB = pts[e].fX - pts[s].fX; | 
|  | fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; | 
|  | } | 
|  |  | 
|  | double cubicPart(const SkDCubic& part) { | 
|  | cubicEndPoints(part); | 
|  | if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) { | 
|  | return pointDistance(part[3]); | 
|  | } | 
|  | return pointDistance(part[2]); | 
|  | } | 
|  |  | 
|  | void lineEndPoints(const SkDLine& pts) { | 
|  | fA = pts[0].fY - pts[1].fY; | 
|  | fB = pts[1].fX - pts[0].fX; | 
|  | fC = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY; | 
|  | } | 
|  |  | 
|  | bool quadEndPoints(const SkDQuad& pts) { | 
|  | quadEndPoints(pts, 0, 1); | 
|  | if (dy() != 0) { | 
|  | return true; | 
|  | } | 
|  | if (dx() == 0) { | 
|  | quadEndPoints(pts, 0, 2); | 
|  | return false; | 
|  | } | 
|  | if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie | 
|  | return true; | 
|  | } | 
|  | // FIXME: after switching to round sort, remove this | 
|  | if (pts[0].fY > pts[2].fY) { | 
|  | fA = DBL_EPSILON; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void quadEndPoints(const SkDQuad& pts, int s, int e) { | 
|  | fA = pts[s].fY - pts[e].fY; | 
|  | fB = pts[e].fX - pts[s].fX; | 
|  | fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; | 
|  | } | 
|  |  | 
|  | double quadPart(const SkDQuad& part) { | 
|  | quadEndPoints(part); | 
|  | return pointDistance(part[2]); | 
|  | } | 
|  |  | 
|  | double normalSquared() const { | 
|  | return fA * fA + fB * fB; | 
|  | } | 
|  |  | 
|  | bool normalize() { | 
|  | double normal = sqrt(normalSquared()); | 
|  | if (approximately_zero(normal)) { | 
|  | fA = fB = fC = 0; | 
|  | return false; | 
|  | } | 
|  | double reciprocal = 1 / normal; | 
|  | fA *= reciprocal; | 
|  | fB *= reciprocal; | 
|  | fC *= reciprocal; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const { | 
|  | double oneThird = 1 / 3.0; | 
|  | for (int index = 0; index < 4; ++index) { | 
|  | distance[index].fX = index * oneThird; | 
|  | distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC; | 
|  | } | 
|  | } | 
|  |  | 
|  | void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const { | 
|  | double oneHalf = 1 / 2.0; | 
|  | for (int index = 0; index < 3; ++index) { | 
|  | distance[index].fX = index * oneHalf; | 
|  | distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC; | 
|  | } | 
|  | } | 
|  |  | 
|  | double controlPtDistance(const SkDCubic& pts, int index) const { | 
|  | SkASSERT(index == 1 || index == 2); | 
|  | return fA * pts[index].fX + fB * pts[index].fY + fC; | 
|  | } | 
|  |  | 
|  | double controlPtDistance(const SkDQuad& pts) const { | 
|  | return fA * pts[1].fX + fB * pts[1].fY + fC; | 
|  | } | 
|  |  | 
|  | double pointDistance(const SkDPoint& pt) const { | 
|  | return fA * pt.fX + fB * pt.fY + fC; | 
|  | } | 
|  |  | 
|  | double dx() const { | 
|  | return fB; | 
|  | } | 
|  |  | 
|  | double dy() const { | 
|  | return -fA; | 
|  | } | 
|  |  | 
|  | private: | 
|  | double fA; | 
|  | double fB; | 
|  | double fC; | 
|  | }; | 
|  |  | 
|  | #endif |