blob: 8564a81a0cf0e42eb4fa6aa6b6b45c1cf6a7aeab [file] [log] [blame]
/*
* Copyright 2021 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/gpu/graphite/Recorder.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkTraceMemoryDump.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/gpu/graphite/BackendTexture.h"
#include "include/gpu/graphite/GraphiteTypes.h"
#include "include/gpu/graphite/ImageProvider.h"
#include "include/gpu/graphite/Recording.h"
#include "src/core/SkCompressedDataUtils.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/AtlasTypes.h"
#include "src/gpu/DataUtils.h"
#include "src/gpu/RefCntedCallback.h"
#include "src/gpu/graphite/AtlasProvider.h"
#include "src/gpu/graphite/BufferManager.h"
#include "src/gpu/graphite/Caps.h"
#include "src/gpu/graphite/CommandBuffer.h"
#include "src/gpu/graphite/ContextPriv.h"
#include "src/gpu/graphite/Device.h"
#include "src/gpu/graphite/GlobalCache.h"
#include "src/gpu/graphite/Log.h"
#include "src/gpu/graphite/PathAtlas.h"
#include "src/gpu/graphite/PipelineData.h"
#include "src/gpu/graphite/PipelineDataCache.h"
#include "src/gpu/graphite/ProxyCache.h"
#include "src/gpu/graphite/RasterPathAtlas.h"
#include "src/gpu/graphite/RecorderPriv.h"
#include "src/gpu/graphite/RecordingPriv.h"
#include "src/gpu/graphite/ResourceProvider.h"
#include "src/gpu/graphite/RuntimeEffectDictionary.h"
#include "src/gpu/graphite/ScratchResourceManager.h"
#include "src/gpu/graphite/SharedContext.h"
#include "src/gpu/graphite/Texture.h"
#include "src/gpu/graphite/UploadBufferManager.h"
#include "src/gpu/graphite/task/CopyTask.h"
#include "src/gpu/graphite/task/TaskList.h"
#include "src/gpu/graphite/task/UploadTask.h"
#include "src/gpu/graphite/text/TextAtlasManager.h"
#include "src/image/SkImage_Base.h"
#include "src/text/gpu/StrikeCache.h"
#include "src/text/gpu/TextBlobRedrawCoordinator.h"
namespace skgpu::graphite {
#define ASSERT_SINGLE_OWNER SKGPU_ASSERT_SINGLE_OWNER(this->singleOwner())
#define ASSERT_SINGLE_OWNER_PRIV SKGPU_ASSERT_SINGLE_OWNER(fRecorder->singleOwner())
/*
* The default image provider doesn't perform any conversion so, by default, Graphite won't
* draw any non-Graphite-backed images.
*/
class DefaultImageProvider final : public ImageProvider {
public:
static sk_sp<DefaultImageProvider> Make() {
return sk_ref_sp(new DefaultImageProvider);
}
sk_sp<SkImage> findOrCreate(Recorder* recorder,
const SkImage* image,
SkImage::RequiredProperties) override {
SkASSERT(!as_IB(image)->isGraphiteBacked());
return nullptr;
}
private:
DefaultImageProvider() {}
};
/**************************************************************************************************/
RecorderOptions::RecorderOptions() = default;
RecorderOptions::RecorderOptions(const RecorderOptions&) = default;
RecorderOptions::~RecorderOptions() = default;
/**************************************************************************************************/
static uint32_t next_id() {
static std::atomic<uint32_t> nextID{1};
uint32_t id;
do {
id = nextID.fetch_add(1, std::memory_order_relaxed);
} while (id == SK_InvalidGenID);
return id;
}
Recorder::Recorder(sk_sp<SharedContext> sharedContext, const RecorderOptions& options)
: fSharedContext(std::move(sharedContext))
, fRuntimeEffectDict(std::make_unique<RuntimeEffectDictionary>())
, fRootTaskList(new TaskList)
, fUniformDataCache(new UniformDataCache)
, fTextureDataCache(new TextureDataCache)
, fProxyReadCounts(new ProxyReadCountMap)
, fUniqueID(next_id())
, fAtlasProvider(std::make_unique<AtlasProvider>(this))
, fTokenTracker(std::make_unique<TokenTracker>())
, fStrikeCache(std::make_unique<sktext::gpu::StrikeCache>())
, fTextBlobCache(std::make_unique<sktext::gpu::TextBlobRedrawCoordinator>(fUniqueID)) {
fClientImageProvider = options.fImageProvider;
if (!fClientImageProvider) {
fClientImageProvider = DefaultImageProvider::Make();
}
fResourceProvider = fSharedContext->makeResourceProvider(this->singleOwner(),
fUniqueID,
options.fGpuBudgetInBytes);
fUploadBufferManager = std::make_unique<UploadBufferManager>(fResourceProvider.get(),
fSharedContext->caps());
fDrawBufferManager = std::make_unique<DrawBufferManager>(fResourceProvider.get(),
fSharedContext->caps(),
fUploadBufferManager.get());
SkASSERT(fResourceProvider);
}
Recorder::~Recorder() {
ASSERT_SINGLE_OWNER
// Any finished procs that haven't been passed to a Recording fail
for (int i = 0; i < fFinishedProcs.size(); ++i) {
fFinishedProcs[i]->setFailureResult();
}
for (auto& device : fTrackedDevices) {
// deregisterDevice() may have left an entry as null previously.
if (device) {
device->abandonRecorder();
}
}
#if defined(GRAPHITE_TEST_UTILS)
if (fContext) {
fContext->priv().deregisterRecorder(this);
}
#endif
// TODO: needed?
fStrikeCache->freeAll();
}
BackendApi Recorder::backend() const { return fSharedContext->backend(); }
std::unique_ptr<Recording> Recorder::snap() {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
ASSERT_SINGLE_OWNER
this->priv().flushTrackedDevices();
std::unordered_set<sk_sp<TextureProxy>, Recording::ProxyHash> nonVolatileLazyProxies;
std::unordered_set<sk_sp<TextureProxy>, Recording::ProxyHash> volatileLazyProxies;
fTextureDataCache->foreach([&](const TextureDataBlock* block) {
for (int j = 0; j < block->numTextures(); ++j) {
const TextureDataBlock::SampledTexture& tex = block->texture(j);
if (tex.first->isLazy()) {
if (tex.first->isVolatile()) {
volatileLazyProxies.insert(tex.first);
} else {
nonVolatileLazyProxies.insert(tex.first);
}
}
}
});
std::unique_ptr<Recording::LazyProxyData> targetProxyData;
if (fTargetProxyData) {
targetProxyData = std::move(fTargetProxyData);
fTargetProxyDevice.reset();
fTargetProxyCanvas.reset();
}
// The scratch resources only need to be tracked until prepareResources() is finished, so
// Recorder doesn't hold a persistent manager and it can be deleted when snap() returns.
ScratchResourceManager scratchManager{fResourceProvider.get(), std::move(fProxyReadCounts)};
fProxyReadCounts = std::make_unique<ProxyReadCountMap>();
// In both the "task failed" case and the "everything is discarded" case, there's no work that
// needs to be done in insertRecording(). However, we use nullptr as a failure signal, so
// kDiscard will return a non-null Recording that has no tasks in it.
if (fDrawBufferManager->hasMappingFailed() ||
fRootTaskList->prepareResources(fResourceProvider.get(),
&scratchManager,
fRuntimeEffectDict.get()) == Task::Status::kFail) {
// Leaving 'fTrackedDevices' alone since they were flushed earlier and could still be
// attached to extant SkSurfaces.
fDrawBufferManager = std::make_unique<DrawBufferManager>(fResourceProvider.get(),
fSharedContext->caps(),
fUploadBufferManager.get());
fTextureDataCache = std::make_unique<TextureDataCache>();
fUniformDataCache = std::make_unique<UniformDataCache>();
fRootTaskList->reset();
fRuntimeEffectDict->reset();
return nullptr;
}
std::unique_ptr<Recording> recording(new Recording(fNextRecordingID++,
fUniqueID,
std::move(nonVolatileLazyProxies),
std::move(volatileLazyProxies),
std::move(targetProxyData),
std::move(fFinishedProcs)));
// Allow the buffer managers to add any collected tasks for data transfer or initialization
// before moving the root task list to the Recording.
fDrawBufferManager->transferToRecording(recording.get());
fUploadBufferManager->transferToRecording(recording.get());
recording->priv().addTasks(std::move(*fRootTaskList));
SkASSERT(!fRootTaskList->hasTasks());
fRuntimeEffectDict->reset();
fTextureDataCache = std::make_unique<TextureDataCache>();
fUniformDataCache = std::make_unique<UniformDataCache>();
if (!this->priv().caps()->requireOrderedRecordings()) {
fAtlasProvider->textAtlasManager()->evictAtlases();
}
return recording;
}
SkCanvas* Recorder::makeDeferredCanvas(const SkImageInfo& imageInfo,
const TextureInfo& textureInfo) {
// Mipmaps can't reasonably be kept valid on a deferred surface with no actual texture.
if (textureInfo.mipmapped() == Mipmapped::kYes) {
SKGPU_LOG_W("Requested a deferred canvas with mipmapping; this is not supported");
return nullptr;
}
if (fTargetProxyCanvas) {
// Require snapping before requesting another canvas.
SKGPU_LOG_W("Requested a new deferred canvas before snapping the previous one");
return nullptr;
}
fTargetProxyData = std::make_unique<Recording::LazyProxyData>(textureInfo);
// Use kLoad for the initial load op since the purpose of a deferred canvas is to draw on top
// of an existing, late-bound texture.
fTargetProxyDevice = Device::Make(this,
fTargetProxyData->refLazyProxy(),
imageInfo.dimensions(),
imageInfo.colorInfo(),
{},
LoadOp::kLoad);
fTargetProxyCanvas = std::make_unique<SkCanvas>(fTargetProxyDevice);
return fTargetProxyCanvas.get();
}
void Recorder::registerDevice(sk_sp<Device> device) {
ASSERT_SINGLE_OWNER
SkASSERT(device);
// By taking a ref on tracked devices, the Recorder prevents the Device from being deleted on
// another thread unless the Recorder has been destroyed or the device has abandoned its
// recorder (e.g. was marked immutable).
fTrackedDevices.emplace_back(std::move(device));
}
void Recorder::deregisterDevice(const Device* device) {
ASSERT_SINGLE_OWNER
for (int i = 0; i < fTrackedDevices.size(); ++i) {
if (fTrackedDevices[i].get() == device) {
// Don't modify the list structure of fTrackedDevices within this loop
fTrackedDevices[i] = nullptr;
break;
}
}
}
BackendTexture Recorder::createBackendTexture(SkISize dimensions, const TextureInfo& info) {
ASSERT_SINGLE_OWNER
if (!info.isValid() || info.backend() != this->backend()) {
return {};
}
return fResourceProvider->createBackendTexture(dimensions, info);
}
#ifdef SK_BUILD_FOR_ANDROID
BackendTexture Recorder::createBackendTexture(AHardwareBuffer* hardwareBuffer,
bool isRenderable,
bool isProtectedContent,
SkISize dimensions,
bool fromAndroidWindow) const {
if (fSharedContext->backend() != BackendApi::kVulkan) {
SKGPU_LOG_W("Creating an AHardwareBuffer-backed BackendTexture is only supported with the"
"Vulkan backend.");
return {};
}
return fResourceProvider->createBackendTexture(hardwareBuffer,
isRenderable,
isProtectedContent,
dimensions,
fromAndroidWindow);
}
#endif // SK_BUILD_FOR_ANDROID
bool Recorder::updateBackendTexture(const BackendTexture& backendTex,
const SkPixmap srcData[],
int numLevels) {
ASSERT_SINGLE_OWNER
if (!backendTex.isValid() || backendTex.backend() != this->backend()) {
return false;
}
if (!srcData || numLevels <= 0) {
return false;
}
// If the texture has MIP levels then we require that the full set is overwritten.
int numExpectedLevels = 1;
if (backendTex.info().mipmapped() == Mipmapped::kYes) {
numExpectedLevels = SkMipmap::ComputeLevelCount(backendTex.dimensions().width(),
backendTex.dimensions().height()) + 1;
}
if (numLevels != numExpectedLevels) {
return false;
}
SkColorType ct = srcData[0].colorType();
if (!this->priv().caps()->areColorTypeAndTextureInfoCompatible(ct, backendTex.info())) {
return false;
}
sk_sp<Texture> texture = this->priv().resourceProvider()->createWrappedTexture(backendTex, "");
if (!texture) {
return false;
}
sk_sp<TextureProxy> proxy = TextureProxy::Wrap(std::move(texture));
std::vector<MipLevel> mipLevels;
mipLevels.resize(numLevels);
for (int i = 0; i < numLevels; ++i) {
SkASSERT(srcData[i].addr());
SkASSERT(srcData[i].info().colorInfo() == srcData[0].info().colorInfo());
mipLevels[i].fPixels = srcData[i].addr();
mipLevels[i].fRowBytes = srcData[i].rowBytes();
}
// Src and dst colorInfo are the same
const SkColorInfo& colorInfo = srcData[0].info().colorInfo();
// Add UploadTask to Recorder
UploadInstance upload = UploadInstance::Make(this,
std::move(proxy),
colorInfo, colorInfo,
mipLevels,
SkIRect::MakeSize(backendTex.dimensions()),
std::make_unique<ImageUploadContext>());
if (!upload.isValid()) {
SKGPU_LOG_E("Recorder::updateBackendTexture: Could not create UploadInstance");
return false;
}
sk_sp<Task> uploadTask = UploadTask::Make(std::move(upload));
// Need to flush any pending work in case it depends on this texture
this->priv().flushTrackedDevices();
this->priv().add(std::move(uploadTask));
return true;
}
bool Recorder::updateCompressedBackendTexture(const BackendTexture& backendTex,
const void* data,
size_t dataSize) {
ASSERT_SINGLE_OWNER
if (!backendTex.isValid() || backendTex.backend() != this->backend()) {
return false;
}
if (!data) {
return false;
}
sk_sp<Texture> texture = this->priv().resourceProvider()->createWrappedTexture(backendTex, "");
if (!texture) {
return false;
}
sk_sp<TextureProxy> proxy = TextureProxy::Wrap(std::move(texture));
// Add UploadTask to Recorder
UploadInstance upload = UploadInstance::MakeCompressed(this,
std::move(proxy),
data,
dataSize);
if (!upload.isValid()) {
SKGPU_LOG_E("Recorder::updateBackendTexture: Could not create UploadInstance");
return false;
}
sk_sp<Task> uploadTask = UploadTask::Make(std::move(upload));
// Need to flush any pending work in case it depends on this texture
this->priv().flushTrackedDevices();
this->priv().add(std::move(uploadTask));
return true;
}
void Recorder::deleteBackendTexture(const BackendTexture& texture) {
ASSERT_SINGLE_OWNER
if (!texture.isValid() || texture.backend() != this->backend()) {
return;
}
fResourceProvider->deleteBackendTexture(texture);
}
void Recorder::addFinishInfo(const InsertFinishInfo& info) {
if (info.fFinishedProc) {
sk_sp<RefCntedCallback> callback =
RefCntedCallback::Make(info.fFinishedProc, info.fFinishedContext);
fFinishedProcs.push_back(std::move(callback));
}
}
void Recorder::freeGpuResources() {
ASSERT_SINGLE_OWNER
// We don't want to free the Uniform/TextureDataCaches or the Draw/UploadBufferManagers since
// all their resources need to be held on to until a Recording is snapped. And once snapped, all
// their held resources are released. The StrikeCache and TextBlobCache don't hold onto any Gpu
// resources.
// The AtlasProvider gives out refs to TextureProxies so it should be safe to clear its pool
// in the middle of Recording since those using the previous TextureProxies will have refs on
// them.
fAtlasProvider->clearTexturePool();
fResourceProvider->freeGpuResources();
}
void Recorder::performDeferredCleanup(std::chrono::milliseconds msNotUsed) {
ASSERT_SINGLE_OWNER
auto purgeTime = skgpu::StdSteadyClock::now() - msNotUsed;
fResourceProvider->purgeResourcesNotUsedSince(purgeTime);
}
size_t Recorder::currentBudgetedBytes() const {
ASSERT_SINGLE_OWNER
return fResourceProvider->getResourceCacheCurrentBudgetedBytes();
}
size_t Recorder::maxBudgetedBytes() const {
ASSERT_SINGLE_OWNER
return fResourceProvider->getResourceCacheLimit();
}
void Recorder::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const {
ASSERT_SINGLE_OWNER
fResourceProvider->dumpMemoryStatistics(traceMemoryDump);
// TODO: What is the graphite equivalent for the text blob cache and how do we print out its
// used bytes here (see Ganesh implementation).
}
void RecorderPriv::addPendingRead(const TextureProxy* proxy) {
ASSERT_SINGLE_OWNER_PRIV
fRecorder->fProxyReadCounts->increment(proxy);
}
void RecorderPriv::add(sk_sp<Task> task) {
ASSERT_SINGLE_OWNER_PRIV
fRecorder->fRootTaskList->add(std::move(task));
}
void RecorderPriv::flushTrackedDevices() {
ASSERT_SINGLE_OWNER_PRIV
// If this is the initial flushTrackedDevices() call, fFlushingTrackedDevicesIndex will be -1
// so we start iterating at 0. We remember the starting device index to perform clean up only
// when it was 0 to prevent modifying the underlying data structure while iterating over it.
// However, when flushing one device it may register new devices as well as recursively call
// flushTrackedDevices(). In that case, it picks up the next device after the current one that
// triggered the recursive flush since all prior devices have been flushed are in progress
// (and they should not be flushed while in an unfinished flush). When the control flow returns
// to the outer flushTrackedDevices(), it will pick up with wherever the inner flush had ended.
// TODO(b/330864257): Once paint data is extracted at draw time (so picture shaders are rendered
// to images before a flush instead of inside a flush), we can simplify this and assert that
// flushTrackedDevices() is not recursively called and that devices are not added or removed
// while flushing.
const int startingIndex = fRecorder->fFlushingDevicesIndex;
while (fRecorder->fFlushingDevicesIndex < fRecorder->fTrackedDevices.size() - 1) {
// Advance before calling flushPendingWorkToRecorder() so that any re-entrant clal to
// flushTrackedDevices() will skip the current device.
fRecorder->fFlushingDevicesIndex++;
// Entries may be set to null from a call to deregisterDevice(), which will be cleaned up
// along with any immutable or uniquely held Devices once everything is flushed.
Device* device = fRecorder->fTrackedDevices[fRecorder->fFlushingDevicesIndex].get();
if (device) {
device->flushPendingWorkToRecorder();
}
}
// Issue next upload flush token. This is only used by the atlasing code which
// always uses this method. Calling in Device::flushPendingWorkToRecorder may
// miss parent device flushes, increment too often, and lead to atlas corruption.
this->tokenTracker()->issueFlushToken();
if (startingIndex < 0) {
// Initial call to flushTrackedDevices() so cleanup null/immutable devices and reset the
// loop index.
int i = 0;
while (i < fRecorder->fTrackedDevices.size()) {
Device* device = fRecorder->fTrackedDevices[i].get();
if (!device || !device->recorder() || device->unique()) {
if (device) {
device->abandonRecorder(); // Keep ~Device() happy
}
fRecorder->fTrackedDevices.removeShuffle(i);
// Keep i as-is to process what was just shuffled to the ith index.
} else {
i++;
}
}
fRecorder->fFlushingDevicesIndex = -1;
}
}
sk_sp<TextureProxy> RecorderPriv::CreateCachedProxy(Recorder* recorder,
const SkBitmap& bitmap,
std::string_view label,
Mipmapped mipmapped) {
SkASSERT(!bitmap.isNull());
if (!recorder) {
return nullptr;
}
return recorder->priv().proxyCache()->findOrCreateCachedProxy(recorder, bitmap, mipmapped,
std::move(label));
}
size_t RecorderPriv::getResourceCacheLimit() const {
return fRecorder->fResourceProvider->getResourceCacheLimit();
}
#if defined(GRAPHITE_TEST_UTILS)
bool RecorderPriv::deviceIsRegistered(Device* device) const {
ASSERT_SINGLE_OWNER_PRIV
for (const sk_sp<Device>& currentDevice : fRecorder->fTrackedDevices) {
if (device == currentDevice.get()) {
return true;
}
}
return false;
}
// used by the Context that created this Recorder to set a back pointer
void RecorderPriv::setContext(Context* context) {
fRecorder->fContext = context;
}
#endif
} // namespace skgpu::graphite