|  | /* | 
|  | * Copyright 2006 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkAnalyticEdge_DEFINED | 
|  | #define SkAnalyticEdge_DEFINED | 
|  |  | 
|  | #include "include/private/SkTo.h" | 
|  | #include "src/core/SkEdge.h" | 
|  |  | 
|  | #include <utility> | 
|  |  | 
|  | struct SkAnalyticEdge { | 
|  | // Similar to SkEdge, the conic edges will be converted to quadratic edges | 
|  | enum Type { | 
|  | kLine_Type, | 
|  | kQuad_Type, | 
|  | kCubic_Type | 
|  | }; | 
|  |  | 
|  | SkAnalyticEdge* fNext; | 
|  | SkAnalyticEdge* fPrev; | 
|  |  | 
|  | // During aaa_walk_edges, if this edge is a left edge, | 
|  | // then fRiteE is its corresponding right edge. Otherwise it's nullptr. | 
|  | SkAnalyticEdge* fRiteE; | 
|  |  | 
|  | SkFixed fX; | 
|  | SkFixed fDX; | 
|  | SkFixed fUpperX;        // The x value when y = fUpperY | 
|  | SkFixed fY;             // The current y | 
|  | SkFixed fUpperY;        // The upper bound of y (our edge is from y = fUpperY to y = fLowerY) | 
|  | SkFixed fLowerY;        // The lower bound of y (our edge is from y = fUpperY to y = fLowerY) | 
|  | SkFixed fDY;            // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0. | 
|  | // fDY is only used for blitting trapezoids. | 
|  |  | 
|  | SkFixed fSavedX;        // For deferred blitting | 
|  | SkFixed fSavedY;        // For deferred blitting | 
|  | SkFixed fSavedDY;       // For deferred blitting | 
|  |  | 
|  | int8_t  fCurveCount;    // only used by kQuad(+) and kCubic(-) | 
|  | uint8_t fCurveShift;    // appled to all Dx/DDx/DDDx except for fCubicDShift exception | 
|  | uint8_t fCubicDShift;   // applied to fCDx and fCDy only in cubic | 
|  | int8_t  fWinding;       // 1 or -1 | 
|  |  | 
|  | static const int kDefaultAccuracy = 2; // default accuracy for snapping | 
|  |  | 
|  | static inline SkFixed SnapY(SkFixed y) { | 
|  | const int accuracy = kDefaultAccuracy; | 
|  | // This approach is safer than left shift, round, then right shift | 
|  | return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy); | 
|  | } | 
|  |  | 
|  | // Update fX, fY of this edge so fY = y | 
|  | inline void goY(SkFixed y) { | 
|  | if (y == fY + SK_Fixed1) { | 
|  | fX = fX + fDX; | 
|  | fY = y; | 
|  | } else if (y != fY) { | 
|  | // Drop lower digits as our alpha only has 8 bits | 
|  | // (fDX and y - fUpperY may be greater than SK_Fixed1) | 
|  | fX = fUpperX + SkFixedMul(fDX, y - fUpperY); | 
|  | fY = y; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline void goY(SkFixed y, int yShift) { | 
|  | SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy); | 
|  | SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift); | 
|  | fY = y; | 
|  | fX += fDX >> yShift; | 
|  | } | 
|  |  | 
|  | inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) { | 
|  | fSavedX = x; | 
|  | fSavedY = y; | 
|  | fSavedDY = dY; | 
|  | } | 
|  |  | 
|  | bool setLine(const SkPoint& p0, const SkPoint& p1); | 
|  | bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope); | 
|  |  | 
|  | // return true if we're NOT done with this edge | 
|  | bool update(SkFixed last_y, bool sortY = true); | 
|  |  | 
|  | #ifdef SK_DEBUG | 
|  | void dump() const { | 
|  | SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n", | 
|  | fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX), | 
|  | SkFixedToFloat(fDX), fWinding); | 
|  | } | 
|  |  | 
|  | void validate() const { | 
|  | SkASSERT(fPrev && fNext); | 
|  | SkASSERT(fPrev->fNext == this); | 
|  | SkASSERT(fNext->fPrev == this); | 
|  |  | 
|  | SkASSERT(fUpperY < fLowerY); | 
|  | SkASSERT(SkAbs32(fWinding) == 1); | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct SkAnalyticQuadraticEdge : public SkAnalyticEdge { | 
|  | SkQuadraticEdge fQEdge; | 
|  |  | 
|  | // snap y to integer points in the middle of the curve to accelerate AAA path filling | 
|  | SkFixed fSnappedX, fSnappedY; | 
|  |  | 
|  | bool setQuadratic(const SkPoint pts[3]); | 
|  | bool updateQuadratic(); | 
|  | inline void keepContinuous() { | 
|  | // We use fX as the starting x to ensure the continuouty. | 
|  | // Without it, we may break the sorted edge list. | 
|  | SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1); | 
|  | SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump | 
|  | fSnappedX = fX; | 
|  | fSnappedY = fY; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct SkAnalyticCubicEdge : public SkAnalyticEdge { | 
|  | SkCubicEdge fCEdge; | 
|  |  | 
|  | SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping | 
|  |  | 
|  | bool setCubic(const SkPoint pts[4], bool sortY = true); | 
|  | bool updateCubic(bool sortY = true); | 
|  | inline void keepContinuous() { | 
|  | SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1); | 
|  | fCEdge.fCx = fX; | 
|  | fSnappedY = fY; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct SkBezier { | 
|  | int fCount; // 2 line, 3 quad, 4 cubic | 
|  | SkPoint fP0; | 
|  | SkPoint fP1; | 
|  |  | 
|  | // See if left shift, covert to SkFDot6, and round has the same top and bottom y. | 
|  | // If so, the edge will be empty. | 
|  | static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) { | 
|  | #ifdef SK_RASTERIZE_EVEN_ROUNDING | 
|  | return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift); | 
|  | #else | 
|  | SkScalar scale = (1 << (shift + 6)); | 
|  | return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale)); | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct SkLine : public SkBezier { | 
|  | bool set(const SkPoint pts[2]){ | 
|  | if (IsEmpty(pts[0].fY, pts[1].fY)) { | 
|  | return false; | 
|  | } | 
|  | fCount = 2; | 
|  | fP0 = pts[0]; | 
|  | fP1 = pts[1]; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct SkQuad : public SkBezier { | 
|  | SkPoint fP2; | 
|  |  | 
|  | bool set(const SkPoint pts[3]){ | 
|  | if (IsEmpty(pts[0].fY, pts[2].fY)) { | 
|  | return false; | 
|  | } | 
|  | fCount = 3; | 
|  | fP0 = pts[0]; | 
|  | fP1 = pts[1]; | 
|  | fP2 = pts[2]; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct SkCubic : public SkBezier { | 
|  | SkPoint fP2; | 
|  | SkPoint fP3; | 
|  |  | 
|  | bool set(const SkPoint pts[4]){ | 
|  | // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be | 
|  | // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just | 
|  | // checking IsEmpty(pts[0].fY, pts[3].fY). | 
|  | if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) && | 
|  | IsEmpty(pts[2].fY, pts[3].fY)) { | 
|  | return false; | 
|  | } | 
|  | fCount = 4; | 
|  | fP0 = pts[0]; | 
|  | fP1 = pts[1]; | 
|  | fP2 = pts[2]; | 
|  | fP3 = pts[3]; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #endif |