|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "include/utils/SkParse.h" | 
|  | #include "include/utils/SkParsePath.h" | 
|  |  | 
|  | static inline bool is_between(int c, int min, int max) { | 
|  | return (unsigned)(c - min) <= (unsigned)(max - min); | 
|  | } | 
|  |  | 
|  | static inline bool is_ws(int c) { | 
|  | return is_between(c, 1, 32); | 
|  | } | 
|  |  | 
|  | static inline bool is_digit(int c) { | 
|  | return is_between(c, '0', '9'); | 
|  | } | 
|  |  | 
|  | static inline bool is_sep(int c) { | 
|  | return is_ws(c) || c == ','; | 
|  | } | 
|  |  | 
|  | static inline bool is_lower(int c) { | 
|  | return is_between(c, 'a', 'z'); | 
|  | } | 
|  |  | 
|  | static inline int to_upper(int c) { | 
|  | return c - 'a' + 'A'; | 
|  | } | 
|  |  | 
|  | static const char* skip_ws(const char str[]) { | 
|  | SkASSERT(str); | 
|  | while (is_ws(*str)) | 
|  | str++; | 
|  | return str; | 
|  | } | 
|  |  | 
|  | static const char* skip_sep(const char str[]) { | 
|  | if (!str) { | 
|  | return nullptr; | 
|  | } | 
|  | while (is_sep(*str)) | 
|  | str++; | 
|  | return str; | 
|  | } | 
|  |  | 
|  | static const char* find_points(const char str[], SkPoint value[], int count, | 
|  | bool isRelative, SkPoint* relative) { | 
|  | str = SkParse::FindScalars(str, &value[0].fX, count * 2); | 
|  | if (isRelative) { | 
|  | for (int index = 0; index < count; index++) { | 
|  | value[index].fX += relative->fX; | 
|  | value[index].fY += relative->fY; | 
|  | } | 
|  | } | 
|  | return str; | 
|  | } | 
|  |  | 
|  | static const char* find_scalar(const char str[], SkScalar* value, | 
|  | bool isRelative, SkScalar relative) { | 
|  | str = SkParse::FindScalar(str, value); | 
|  | if (!str) { | 
|  | return nullptr; | 
|  | } | 
|  | if (isRelative) { | 
|  | *value += relative; | 
|  | } | 
|  | str = skip_sep(str); | 
|  | return str; | 
|  | } | 
|  |  | 
|  | bool SkParsePath::FromSVGString(const char data[], SkPath* result) { | 
|  | SkPath path; | 
|  | SkPoint first = {0, 0}; | 
|  | SkPoint c = {0, 0}; | 
|  | SkPoint lastc = {0, 0}; | 
|  | SkPoint points[3]; | 
|  | char op = '\0'; | 
|  | char previousOp = '\0'; | 
|  | bool relative = false; | 
|  | for (;;) { | 
|  | if (!data) { | 
|  | // Truncated data | 
|  | return false; | 
|  | } | 
|  | data = skip_ws(data); | 
|  | if (data[0] == '\0') { | 
|  | break; | 
|  | } | 
|  | char ch = data[0]; | 
|  | if (is_digit(ch) || ch == '-' || ch == '+' || ch == '.') { | 
|  | if (op == '\0') { | 
|  | return false; | 
|  | } | 
|  | } else if (is_sep(ch)) { | 
|  | data = skip_sep(data); | 
|  | } else { | 
|  | op = ch; | 
|  | relative = false; | 
|  | if (is_lower(op)) { | 
|  | op = (char) to_upper(op); | 
|  | relative = true; | 
|  | } | 
|  | data++; | 
|  | data = skip_sep(data); | 
|  | } | 
|  | switch (op) { | 
|  | case 'M': | 
|  | data = find_points(data, points, 1, relative, &c); | 
|  | path.moveTo(points[0]); | 
|  | previousOp = '\0'; | 
|  | op = 'L'; | 
|  | c = points[0]; | 
|  | break; | 
|  | case 'L': | 
|  | data = find_points(data, points, 1, relative, &c); | 
|  | path.lineTo(points[0]); | 
|  | c = points[0]; | 
|  | break; | 
|  | case 'H': { | 
|  | SkScalar x; | 
|  | data = find_scalar(data, &x, relative, c.fX); | 
|  | path.lineTo(x, c.fY); | 
|  | c.fX = x; | 
|  | } break; | 
|  | case 'V': { | 
|  | SkScalar y; | 
|  | data = find_scalar(data, &y, relative, c.fY); | 
|  | path.lineTo(c.fX, y); | 
|  | c.fY = y; | 
|  | } break; | 
|  | case 'C': | 
|  | data = find_points(data, points, 3, relative, &c); | 
|  | goto cubicCommon; | 
|  | case 'S': | 
|  | data = find_points(data, &points[1], 2, relative, &c); | 
|  | points[0] = c; | 
|  | if (previousOp == 'C' || previousOp == 'S') { | 
|  | points[0].fX -= lastc.fX - c.fX; | 
|  | points[0].fY -= lastc.fY - c.fY; | 
|  | } | 
|  | cubicCommon: | 
|  | path.cubicTo(points[0], points[1], points[2]); | 
|  | lastc = points[1]; | 
|  | c = points[2]; | 
|  | break; | 
|  | case 'Q':  // Quadratic Bezier Curve | 
|  | data = find_points(data, points, 2, relative, &c); | 
|  | goto quadraticCommon; | 
|  | case 'T': | 
|  | data = find_points(data, &points[1], 1, relative, &c); | 
|  | points[0] = c; | 
|  | if (previousOp == 'Q' || previousOp == 'T') { | 
|  | points[0].fX -= lastc.fX - c.fX; | 
|  | points[0].fY -= lastc.fY - c.fY; | 
|  | } | 
|  | quadraticCommon: | 
|  | path.quadTo(points[0], points[1]); | 
|  | lastc = points[0]; | 
|  | c = points[1]; | 
|  | break; | 
|  | case 'A': { | 
|  | SkPoint radii; | 
|  | SkScalar angle, largeArc, sweep; | 
|  | if ((data = find_points(data, &radii, 1, false, nullptr)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_scalar(data, &angle, false, 0)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_scalar(data, &largeArc, false, 0)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_scalar(data, &sweep, false, 0)) | 
|  | && (data = skip_sep(data)) | 
|  | && (data = find_points(data, &points[0], 1, relative, &c))) { | 
|  | path.arcTo(radii, angle, (SkPath::ArcSize) SkToBool(largeArc), | 
|  | (SkPath::Direction) !SkToBool(sweep), points[0]); | 
|  | path.getLastPt(&c); | 
|  | } | 
|  | } break; | 
|  | case 'Z': | 
|  | path.close(); | 
|  | c = first; | 
|  | break; | 
|  | case '~': { | 
|  | SkPoint args[2]; | 
|  | data = find_points(data, args, 2, false, nullptr); | 
|  | path.moveTo(args[0].fX, args[0].fY); | 
|  | path.lineTo(args[1].fX, args[1].fY); | 
|  | } break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | if (previousOp == 0) { | 
|  | first = c; | 
|  | } | 
|  | previousOp = op; | 
|  | } | 
|  | // we're good, go ahead and swap in the result | 
|  | result->swap(path); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | #include "include/core/SkStream.h" | 
|  | #include "include/core/SkString.h" | 
|  | #include "src/core/SkGeometry.h" | 
|  |  | 
|  | static void write_scalar(SkWStream* stream, SkScalar value) { | 
|  | char buffer[64]; | 
|  | #ifdef SK_BUILD_FOR_WIN | 
|  | int len = _snprintf(buffer, sizeof(buffer), "%g", value); | 
|  | #else | 
|  | int len = snprintf(buffer, sizeof(buffer), "%g", value); | 
|  | #endif | 
|  | char* stop = buffer + len; | 
|  | stream->write(buffer, stop - buffer); | 
|  | } | 
|  |  | 
|  | static void append_scalars(SkWStream* stream, char verb, const SkScalar data[], | 
|  | int count) { | 
|  | stream->write(&verb, 1); | 
|  | write_scalar(stream, data[0]); | 
|  | for (int i = 1; i < count; i++) { | 
|  | stream->write(" ", 1); | 
|  | write_scalar(stream, data[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkParsePath::ToSVGString(const SkPath& path, SkString* str) { | 
|  | SkDynamicMemoryWStream  stream; | 
|  |  | 
|  | SkPath::Iter    iter(path, false); | 
|  | SkPoint         pts[4]; | 
|  |  | 
|  | for (;;) { | 
|  | switch (iter.next(pts, false)) { | 
|  | case SkPath::kConic_Verb: { | 
|  | const SkScalar tol = SK_Scalar1 / 1024; // how close to a quad | 
|  | SkAutoConicToQuads quadder; | 
|  | const SkPoint* quadPts = quadder.computeQuads(pts, iter.conicWeight(), tol); | 
|  | for (int i = 0; i < quadder.countQuads(); ++i) { | 
|  | append_scalars(&stream, 'Q', &quadPts[i*2 + 1].fX, 4); | 
|  | } | 
|  | } break; | 
|  | case SkPath::kMove_Verb: | 
|  | append_scalars(&stream, 'M', &pts[0].fX, 2); | 
|  | break; | 
|  | case SkPath::kLine_Verb: | 
|  | append_scalars(&stream, 'L', &pts[1].fX, 2); | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | append_scalars(&stream, 'Q', &pts[1].fX, 4); | 
|  | break; | 
|  | case SkPath::kCubic_Verb: | 
|  | append_scalars(&stream, 'C', &pts[1].fX, 6); | 
|  | break; | 
|  | case SkPath::kClose_Verb: | 
|  | stream.write("Z", 1); | 
|  | break; | 
|  | case SkPath::kDone_Verb: | 
|  | str->resize(stream.bytesWritten()); | 
|  | stream.copyTo(str->writable_str()); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } |