blob: 0c8dcb530266dab144dabb50563684bfcc7fc597 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef Sk4pxXfermode_DEFINED
#define Sk4pxXfermode_DEFINED
#include "Sk4px.h"
#include "SkPMFloat.h"
#include "SkXfermode_proccoeff.h"
// This file is possibly included into multiple .cpp files.
// Each gets its own independent instantiation by wrapping in an anonymous namespace.
namespace {
// Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point.
#define XFERMODE(Name) \
struct Name { \
static Sk4px Xfer(const Sk4px&, const Sk4px&); \
static const SkXfermode::Mode kMode = SkXfermode::k##Name##_Mode; \
}; \
inline Sk4px Name::Xfer(const Sk4px& s, const Sk4px& d)
XFERMODE(Clear) { return Sk4px::DupPMColor(0); }
XFERMODE(Src) { return s; }
XFERMODE(Dst) { return d; }
XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); }
XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); }
XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); }
XFERMODE(DstIn) { return SrcIn ::Xfer(d,s); }
XFERMODE(DstOut) { return SrcOut ::Xfer(d,s); }
XFERMODE(DstOver) { return SrcOver::Xfer(d,s); }
// [ S * Da + (1 - Sa) * D]
XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); }
XFERMODE(DstATop) { return SrcATop::Xfer(d,s); }
//[ S * (1 - Da) + (1 - Sa) * D ]
XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); }
// [S + D ]
XFERMODE(Plus) { return s.saturatedAdd(d); }
// [S * D ]
XFERMODE(Modulate) { return s.approxMulDiv255(d); }
// [S + D - S * D]
XFERMODE(Screen) {
// Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done
// in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap.
return s + d.approxMulDiv255(s.inv());
}
XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); }
// [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).)
XFERMODE(Difference) {
auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255();
// There's no chance of underflow, and if we subtract m before adding s+d, no overflow.
return (s - m) + (d - m.zeroAlphas());
}
// [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ]
XFERMODE(Exclusion) {
auto p = s.approxMulDiv255(d);
// There's no chance of underflow, and if we subtract p before adding src+dst, no overflow.
return (s - p) + (d - p.zeroAlphas());
}
// We take care to use exact math for these next few modes where alphas
// and colors are calculated using significantly different math. We need
// to preserve premul invariants, and exact math makes this easier.
//
// TODO: Some of these implementations might be able to be sped up a bit
// while maintaining exact math, but let's follow up with that.
XFERMODE(HardLight) {
auto sa = s.alphas(),
da = d.alphas();
auto srcover = s + (d * sa.inv()).div255();
auto isLite = ((sa-s) < s).widenLoHi();
auto lite = sa*da - ((da-d)*(sa-s) << 1),
dark = s*d << 1,
both = s*da.inv() + d*sa.inv();
auto alphas = srcover;
auto colors = (both + isLite.thenElse(lite, dark)).div255();
return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Overlay) { return HardLight::Xfer(d,s); }
XFERMODE(Darken) {
auto sa = s.alphas(),
da = d.alphas();
auto sda = (s*da).div255(),
dsa = (d*sa).div255();
auto srcover = s + (d * sa.inv()).div255(),
dstover = d + (s * da.inv()).div255();
auto alphas = srcover,
colors = (sda < dsa).thenElse(srcover, dstover);
return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Lighten) {
auto sa = s.alphas(),
da = d.alphas();
auto sda = (s*da).div255(),
dsa = (d*sa).div255();
auto srcover = s + (d * sa.inv()).div255(),
dstover = d + (s * da.inv()).div255();
auto alphas = srcover,
colors = (dsa < sda).thenElse(srcover, dstover);
return alphas.zeroColors() + colors.zeroAlphas();
}
#undef XFERMODE
// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
#define XFERMODE(Name) \
struct Name { \
static SkPMFloat Xfer(const SkPMFloat&, const SkPMFloat&); \
static const SkXfermode::Mode kMode = SkXfermode::k##Name##_Mode; \
}; \
inline SkPMFloat Name::Xfer(const SkPMFloat& s, const SkPMFloat& d)
XFERMODE(ColorDodge) {
auto sa = s.alphas(),
da = d.alphas(),
isa = Sk4f(1)-sa,
ida = Sk4f(1)-da;
auto srcover = s + d*isa,
dstover = d + s*ida,
otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa;
// Order matters here, preferring d==0 over s==sa.
auto colors = (d == Sk4f(0)).thenElse(dstover,
(s == sa).thenElse(srcover,
otherwise));
return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1);
}
XFERMODE(ColorBurn) {
auto sa = s.alphas(),
da = d.alphas(),
isa = Sk4f(1)-sa,
ida = Sk4f(1)-da;
auto srcover = s + d*isa,
dstover = d + s*ida,
otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa;
// Order matters here, preferring d==da over s==0.
auto colors = (d == da).thenElse(dstover,
(s == Sk4f(0)).thenElse(srcover,
otherwise));
return srcover * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1);
}
XFERMODE(SoftLight) {
auto sa = s.alphas(),
da = d.alphas(),
isa = Sk4f(1)-sa,
ida = Sk4f(1)-da;
// Some common terms.
auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)),
s2 = Sk4f(2)*s,
m4 = Sk4f(4)*m;
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2.
liteDst = m.sqrt() - m, // Used in case 3.
liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3?
auto alpha = s + d*isa;
auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3?
return alpha * SkPMFloat(1,0,0,0) + colors * SkPMFloat(0,1,1,1);
}
#undef XFERMODE
// A reasonable fallback mode for doing AA is to simply apply the transfermode first,
// then linearly interpolate the AA.
template <typename Mode>
static Sk4px xfer_aa(const Sk4px& s, const Sk4px& d, const Sk4px& aa) {
Sk4px bw = Mode::Xfer(s, d);
return (bw * aa + d * aa.inv()).div255();
}
// For some transfermodes we specialize AA, either for correctness or performance.
#define XFERMODE_AA(Name) \
template <> Sk4px xfer_aa<Name>(const Sk4px& s, const Sk4px& d, const Sk4px& aa)
// Plus' clamp needs to happen after AA. skia:3852
XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
return d.saturatedAdd(s.approxMulDiv255(aa));
}
#undef XFERMODE_AA
template <typename ProcType>
class SkT4pxXfermode : public SkProcCoeffXfermode {
public:
static SkProcCoeffXfermode* Create(const ProcCoeff& rec) {
return SkNEW_ARGS(SkT4pxXfermode, (rec));
}
void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
if (NULL == aa) {
Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) {
return ProcType::Xfer(src4, dst4);
});
} else {
Sk4px::MapDstSrcAlpha(n, dst, src, aa,
[&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) {
return xfer_aa<ProcType>(src4, dst4, alpha);
});
}
}
private:
SkT4pxXfermode(const ProcCoeff& rec) : INHERITED(rec, ProcType::kMode) {}
typedef SkProcCoeffXfermode INHERITED;
};
template <typename ProcType>
class SkTPMFloatXfermode : public SkProcCoeffXfermode {
public:
static SkProcCoeffXfermode* Create(const ProcCoeff& rec) {
return SkNEW_ARGS(SkTPMFloatXfermode, (rec));
}
void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
for (int i = 0; i < n; i++) {
SkPMFloat s(src[i]),
d(dst[i]),
b(ProcType::Xfer(s,d));
if (aa) {
// We do aa in full float precision before going back down to bytes, because we can!
SkPMFloat a = Sk4f(aa[i]) * Sk4f(1.0f/255);
b = b*a + d*(Sk4f(1)-a);
}
dst[i] = b.round();
}
}
private:
SkTPMFloatXfermode(const ProcCoeff& rec) : INHERITED(rec, ProcType::kMode) {}
typedef SkProcCoeffXfermode INHERITED;
};
static SkProcCoeffXfermode* SkCreate4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode) {
#if !defined(SK_CPU_ARM32) || defined(SK_ARM_HAS_NEON)
switch (mode) {
case SkXfermode::kClear_Mode: return SkT4pxXfermode<Clear>::Create(rec);
case SkXfermode::kSrc_Mode: return SkT4pxXfermode<Src>::Create(rec);
case SkXfermode::kDst_Mode: return SkT4pxXfermode<Dst>::Create(rec);
case SkXfermode::kSrcOver_Mode: return SkT4pxXfermode<SrcOver>::Create(rec);
case SkXfermode::kDstOver_Mode: return SkT4pxXfermode<DstOver>::Create(rec);
case SkXfermode::kSrcIn_Mode: return SkT4pxXfermode<SrcIn>::Create(rec);
case SkXfermode::kDstIn_Mode: return SkT4pxXfermode<DstIn>::Create(rec);
case SkXfermode::kSrcOut_Mode: return SkT4pxXfermode<SrcOut>::Create(rec);
case SkXfermode::kDstOut_Mode: return SkT4pxXfermode<DstOut>::Create(rec);
case SkXfermode::kSrcATop_Mode: return SkT4pxXfermode<SrcATop>::Create(rec);
case SkXfermode::kDstATop_Mode: return SkT4pxXfermode<DstATop>::Create(rec);
case SkXfermode::kXor_Mode: return SkT4pxXfermode<Xor>::Create(rec);
case SkXfermode::kPlus_Mode: return SkT4pxXfermode<Plus>::Create(rec);
case SkXfermode::kModulate_Mode: return SkT4pxXfermode<Modulate>::Create(rec);
case SkXfermode::kScreen_Mode: return SkT4pxXfermode<Screen>::Create(rec);
case SkXfermode::kMultiply_Mode: return SkT4pxXfermode<Multiply>::Create(rec);
case SkXfermode::kDifference_Mode: return SkT4pxXfermode<Difference>::Create(rec);
case SkXfermode::kExclusion_Mode: return SkT4pxXfermode<Exclusion>::Create(rec);
case SkXfermode::kHardLight_Mode: return SkT4pxXfermode<HardLight>::Create(rec);
case SkXfermode::kOverlay_Mode: return SkT4pxXfermode<Overlay>::Create(rec);
case SkXfermode::kDarken_Mode: return SkT4pxXfermode<Darken>::Create(rec);
case SkXfermode::kLighten_Mode: return SkT4pxXfermode<Lighten>::Create(rec);
case SkXfermode::kColorDodge_Mode: return SkTPMFloatXfermode<ColorDodge>::Create(rec);
case SkXfermode::kColorBurn_Mode: return SkTPMFloatXfermode<ColorBurn>::Create(rec);
case SkXfermode::kSoftLight_Mode: return SkTPMFloatXfermode<SoftLight>::Create(rec);
default: break;
}
#endif
return nullptr;
}
} // namespace
#endif//Sk4pxXfermode_DEFINED