blob: 1f9c291cde1b3b414b98805ea5ed1cb711e6cd96 [file] [log] [blame]
#include "Benchmark.h"
#include "SkPMFloat.h"
// Used to prevent the compiler from optimizing away the whole loop.
volatile uint32_t blackhole = 0;
// Not a great random number generator, but it's very fast.
// The code we're measuring is quite fast, so low overhead is essential.
static uint32_t lcg_rand(uint32_t* seed) {
*seed *= 1664525;
*seed += 1013904223;
return *seed;
}
struct PMFloatBench : public Benchmark {
explicit PMFloatBench(bool clamp) : fClamp(clamp) {}
const char* onGetName() SK_OVERRIDE { return fClamp ? "SkPMFloat_clamp" : "SkPMFloat_get"; }
bool isSuitableFor(Backend backend) SK_OVERRIDE { return backend == kNonRendering_Backend; }
void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
// Unlike blackhole, junk can and probably will be a register.
uint32_t junk = 0;
uint32_t seed = 0;
for (int i = 0; i < loops; i++) {
#ifdef SK_DEBUG
// Our SkASSERTs will remind us that it's technically required that we premultiply.
SkPMColor c = SkPreMultiplyColor(lcg_rand(&seed));
#else
// But it's a lot faster not to, and this code won't really mind the non-PM colors.
SkPMColor c = lcg_rand(&seed);
#endif
SkPMFloat pmf;
pmf.set(c);
SkPMColor back = fClamp ? pmf.clamped() : pmf.get();
junk ^= back;
}
blackhole ^= junk;
}
bool fClamp;
};
DEF_BENCH(return new PMFloatBench( true);)
DEF_BENCH(return new PMFloatBench(false);)