|  | /* | 
|  | * Copyright 2018 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SKSL_STANDALONE | 
|  |  | 
|  | #include "include/core/SkPoint3.h" | 
|  | #include "include/private/SkVx.h" | 
|  | #include "src/core/SkUtils.h"   // sk_unaligned_load | 
|  | #include "src/sksl/SkSLByteCode.h" | 
|  | #include "src/sksl/SkSLByteCodeGenerator.h" | 
|  | #include "src/sksl/SkSLExternalValue.h" | 
|  |  | 
|  | #include <functional> | 
|  | #include <vector> | 
|  |  | 
|  | namespace SkSL { | 
|  |  | 
|  | #if defined(SK_ENABLE_SKSL_INTERPRETER) | 
|  |  | 
|  | constexpr int VecWidth = ByteCode::kVecWidth; | 
|  |  | 
|  | struct Interpreter { | 
|  |  | 
|  | using F32 = skvx::Vec<VecWidth, float>; | 
|  | using I32 = skvx::Vec<VecWidth, int32_t>; | 
|  | using U32 = skvx::Vec<VecWidth, uint32_t>; | 
|  |  | 
|  | #define READ8() (*(ip++)) | 
|  | #define READ16() (ip += 2, sk_unaligned_load<uint16_t>(ip - 2)) | 
|  | #define READ32() (ip += 4, sk_unaligned_load<uint32_t>(ip - 4)) | 
|  | #define READ_INST() (ip += sizeof(ByteCodeInstruction), \ | 
|  | sk_unaligned_load<ByteCodeInstruction>(ip - sizeof(ByteCodeInstruction))) | 
|  |  | 
|  | #define DISASSEMBLE_COUNT(op, text) \ | 
|  | case ByteCodeInstruction::op: printf(text " %d", READ8()); break; | 
|  |  | 
|  | #define DISASSEMBLE_COUNT_SLOT(op, text)  \ | 
|  | case ByteCodeInstruction::op: {       \ | 
|  | int N    = READ8(),               \ | 
|  | slot = READ8();               \ | 
|  | printf(text " %d [%d]", N, slot); \ | 
|  | } break; | 
|  |  | 
|  | static const uint8_t* DisassembleInstruction(const uint8_t* ip) { | 
|  | auto inst = READ_INST(); | 
|  | printf("%02x ", (int)inst); | 
|  | switch (inst) { | 
|  | DISASSEMBLE_COUNT(kAbs , "abs") | 
|  | DISASSEMBLE_COUNT(kAddF, "addf") | 
|  | DISASSEMBLE_COUNT(kAddI, "addi") | 
|  | DISASSEMBLE_COUNT(kAndB, "andb") | 
|  | DISASSEMBLE_COUNT(kACos, "acos") | 
|  | DISASSEMBLE_COUNT(kASin, "asin") | 
|  | DISASSEMBLE_COUNT(kATan, "atan") | 
|  | DISASSEMBLE_COUNT(kATan2, "atan2") | 
|  | case ByteCodeInstruction::kBranch: printf("branch %d", READ16()); break; | 
|  | case ByteCodeInstruction::kCall: printf("call %d", READ8()); break; | 
|  | case ByteCodeInstruction::kCallExternal: { | 
|  | int argumentCount = READ8(); | 
|  | int returnCount = READ8(); | 
|  | int externalValue = READ8(); | 
|  | printf("callexternal %d, %d, %d", argumentCount, returnCount, externalValue); | 
|  | break; | 
|  | } | 
|  | DISASSEMBLE_COUNT(kCeil, "ceil") | 
|  | case ByteCodeInstruction::kClampIndex: printf("clampindex %d", READ8()); break; | 
|  | DISASSEMBLE_COUNT(kCompareIEQ, "compareieq") | 
|  | DISASSEMBLE_COUNT(kCompareINEQ, "compareineq") | 
|  | DISASSEMBLE_COUNT(kCompareFEQ, "comparefeq") | 
|  | DISASSEMBLE_COUNT(kCompareFNEQ, "comparefneq") | 
|  | DISASSEMBLE_COUNT(kCompareFGT, "comparefgt") | 
|  | DISASSEMBLE_COUNT(kCompareFGTEQ, "comparefgteq") | 
|  | DISASSEMBLE_COUNT(kCompareFLT, "compareflt") | 
|  | DISASSEMBLE_COUNT(kCompareFLTEQ, "compareflteq") | 
|  | DISASSEMBLE_COUNT(kCompareSGT, "comparesgt") | 
|  | DISASSEMBLE_COUNT(kCompareSGTEQ, "comparesgteq") | 
|  | DISASSEMBLE_COUNT(kCompareSLT, "compareslt") | 
|  | DISASSEMBLE_COUNT(kCompareSLTEQ, "compareslteq") | 
|  | DISASSEMBLE_COUNT(kCompareUGT, "compareugt") | 
|  | DISASSEMBLE_COUNT(kCompareUGTEQ, "compareugteq") | 
|  | DISASSEMBLE_COUNT(kCompareULT, "compareult") | 
|  | DISASSEMBLE_COUNT(kCompareULTEQ, "compareulteq") | 
|  | DISASSEMBLE_COUNT(kConvertFtoI, "convertftoi") | 
|  | DISASSEMBLE_COUNT(kConvertStoF, "convertstof") | 
|  | DISASSEMBLE_COUNT(kConvertUtoF, "convertutof") | 
|  | DISASSEMBLE_COUNT(kCos, "cos") | 
|  | DISASSEMBLE_COUNT(kDivideF, "dividef") | 
|  | DISASSEMBLE_COUNT(kDivideS, "divideS") | 
|  | DISASSEMBLE_COUNT(kDivideU, "divideu") | 
|  | DISASSEMBLE_COUNT(kDup, "dup") | 
|  | DISASSEMBLE_COUNT(kExp, "exp") | 
|  | DISASSEMBLE_COUNT(kExp2, "exp2") | 
|  | DISASSEMBLE_COUNT(kFloor, "floor") | 
|  | DISASSEMBLE_COUNT(kFract, "fract") | 
|  | case ByteCodeInstruction::kInverse2x2: printf("inverse2x2"); break; | 
|  | case ByteCodeInstruction::kInverse3x3: printf("inverse3x3"); break; | 
|  | case ByteCodeInstruction::kInverse4x4: printf("inverse4x4"); break; | 
|  | DISASSEMBLE_COUNT(kInvSqrt, "inversesqrt") | 
|  | DISASSEMBLE_COUNT(kLerp, "lerp") | 
|  | DISASSEMBLE_COUNT_SLOT(kLoad, "load") | 
|  | DISASSEMBLE_COUNT_SLOT(kLoadGlobal, "loadglobal") | 
|  | DISASSEMBLE_COUNT_SLOT(kLoadUniform, "loaduniform") | 
|  | DISASSEMBLE_COUNT(kLoadExtended, "loadextended") | 
|  | DISASSEMBLE_COUNT(kLoadExtendedGlobal, "loadextendedglobal") | 
|  | DISASSEMBLE_COUNT(kLoadExtendedUniform, "loadextendeduniform") | 
|  | case ByteCodeInstruction::kLoadFragCoord: printf("loadfragcoord"); break; | 
|  | DISASSEMBLE_COUNT(kLog, "log") | 
|  | DISASSEMBLE_COUNT(kLog2, "log2") | 
|  | case ByteCodeInstruction::kMatrixToMatrix: { | 
|  | int srcCols = READ8(); | 
|  | int srcRows = READ8(); | 
|  | int dstCols = READ8(); | 
|  | int dstRows = READ8(); | 
|  | printf("matrixtomatrix %dx%d %dx%d", srcCols, srcRows, dstCols, dstRows); | 
|  | break; | 
|  | } | 
|  | case ByteCodeInstruction::kMatrixMultiply: { | 
|  | int lCols = READ8(); | 
|  | int lRows = READ8(); | 
|  | int rCols = READ8(); | 
|  | printf("matrixmultiply %dx%d %dx%d", lCols, lRows, rCols, lCols); | 
|  | break; | 
|  | } | 
|  | DISASSEMBLE_COUNT(kMaxF, "maxf") | 
|  | DISASSEMBLE_COUNT(kMaxS, "maxs") | 
|  | DISASSEMBLE_COUNT(kMinF, "minf") | 
|  | DISASSEMBLE_COUNT(kMinS, "mins") | 
|  | DISASSEMBLE_COUNT(kMix, "mix") | 
|  | DISASSEMBLE_COUNT(kMod, "mod") | 
|  | DISASSEMBLE_COUNT(kMultiplyF, "multiplyf") | 
|  | DISASSEMBLE_COUNT(kMultiplyI, "multiplyi") | 
|  | DISASSEMBLE_COUNT(kNegateF, "negatef") | 
|  | DISASSEMBLE_COUNT(kNegateI, "negatei") | 
|  | DISASSEMBLE_COUNT(kNotB, "notb") | 
|  | DISASSEMBLE_COUNT(kOrB, "orb") | 
|  | DISASSEMBLE_COUNT(kPop, "pop") | 
|  | DISASSEMBLE_COUNT(kPow, "pow") | 
|  | case ByteCodeInstruction::kPushImmediate: { | 
|  | uint32_t v = READ32(); | 
|  | union { uint32_t u; float f; } pun = { v }; | 
|  | printf("pushimmediate %s", (to_string(v) + "(" + to_string(pun.f) + ")").c_str()); | 
|  | break; | 
|  | } | 
|  | DISASSEMBLE_COUNT_SLOT(kReadExternal, "readexternal") | 
|  | DISASSEMBLE_COUNT(kRemainderF, "remainderf") | 
|  | DISASSEMBLE_COUNT(kRemainderS, "remainders") | 
|  | DISASSEMBLE_COUNT(kRemainderU, "remainderu") | 
|  | DISASSEMBLE_COUNT(kReserve, "reserve") | 
|  | DISASSEMBLE_COUNT(kReturn, "return") | 
|  | case ByteCodeInstruction::kSample: printf("sample %d", READ8()); break; | 
|  | case ByteCodeInstruction::kSampleExplicit: printf("sampleExplicit %d", READ8()); break; | 
|  | case ByteCodeInstruction::kSampleMatrix: printf("sampleMatrix %d", READ8()); break; | 
|  | case ByteCodeInstruction::kScalarToMatrix: { | 
|  | int cols = READ8(); | 
|  | int rows = READ8(); | 
|  | printf("scalartomatrix %dx%d", cols, rows); | 
|  | break; | 
|  | } | 
|  | case ByteCodeInstruction::kShiftLeft: printf("shl %d", READ8()); break; | 
|  | case ByteCodeInstruction::kShiftRightS: printf("shrs %d", READ8()); break; | 
|  | case ByteCodeInstruction::kShiftRightU: printf("shru %d", READ8()); break; | 
|  | DISASSEMBLE_COUNT(kSign, "sign") | 
|  | DISASSEMBLE_COUNT(kSin, "sin") | 
|  | DISASSEMBLE_COUNT(kSqrt, "sqrt") | 
|  | DISASSEMBLE_COUNT(kStep, "step") | 
|  | DISASSEMBLE_COUNT_SLOT(kStore, "store") | 
|  | DISASSEMBLE_COUNT_SLOT(kStoreGlobal, "storeglobal") | 
|  | DISASSEMBLE_COUNT(kStoreExtended, "storeextended") | 
|  | DISASSEMBLE_COUNT(kStoreExtendedGlobal, "storeextendedglobal") | 
|  | DISASSEMBLE_COUNT(kSubtractF, "subtractf") | 
|  | DISASSEMBLE_COUNT(kSubtractI, "subtracti") | 
|  | case ByteCodeInstruction::kSwizzle: { | 
|  | printf("swizzle %d, ", READ8()); | 
|  | int count = READ8(); | 
|  | printf("%d", count); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | printf(", %d", READ8()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | DISASSEMBLE_COUNT(kTan, "tan") | 
|  | DISASSEMBLE_COUNT_SLOT(kWriteExternal, "writeexternal") | 
|  | DISASSEMBLE_COUNT(kXorB, "xorb") | 
|  | case ByteCodeInstruction::kMaskPush: printf("maskpush"); break; | 
|  | case ByteCodeInstruction::kMaskPop: printf("maskpop"); break; | 
|  | case ByteCodeInstruction::kMaskNegate: printf("masknegate"); break; | 
|  | case ByteCodeInstruction::kMaskBlend: printf("maskblend %d", READ8()); break; | 
|  | case ByteCodeInstruction::kBranchIfAllFalse: | 
|  | printf("branchifallfalse %d", READ16()); | 
|  | break; | 
|  | case ByteCodeInstruction::kLoopBegin: printf("loopbegin"); break; | 
|  | case ByteCodeInstruction::kLoopNext: printf("loopnext"); break; | 
|  | case ByteCodeInstruction::kLoopMask: printf("loopmask"); break; | 
|  | case ByteCodeInstruction::kLoopEnd: printf("loopend"); break; | 
|  | case ByteCodeInstruction::kLoopContinue: printf("loopcontinue"); break; | 
|  | case ByteCodeInstruction::kLoopBreak: printf("loopbreak"); break; | 
|  | default: | 
|  | ip -= sizeof(ByteCodeInstruction); | 
|  | printf("unknown(%d)\n", (int) (intptr_t) READ_INST()); | 
|  | SkASSERT(false); | 
|  | } | 
|  | return ip; | 
|  | } | 
|  |  | 
|  | // A naive implementation of / or % using skvx operations will likely crash with a divide by zero | 
|  | // in inactive vector lanes, so we need to be sure to avoid masked-off lanes. | 
|  | // TODO: Would it be better to do this with a select of (lane, 1) based on mask? | 
|  | #define VECTOR_BINARY_MASKED_OP(inst, field, op)                \ | 
|  | case ByteCodeInstruction::inst: {                           \ | 
|  | int count = READ8();                                    \ | 
|  | for (int i = count; i > 0; --i) {                       \ | 
|  | for (int j = 0; j < VecWidth; ++j) {                \ | 
|  | if (mask()[j]) {                                \ | 
|  | sp[-count].field[j] op ## = sp[0].field[j]; \ | 
|  | }                                               \ | 
|  | }                                                   \ | 
|  | POP();                                              \ | 
|  | }                                                       \ | 
|  | } continue; | 
|  |  | 
|  | #define VECTOR_BINARY_OP(inst, field, op)                 \ | 
|  | case ByteCodeInstruction::inst: {                     \ | 
|  | int count = READ8();                              \ | 
|  | for (int i = count; i > 0; --i) {                 \ | 
|  | sp[-count] = sp[-count].field op sp[0].field; \ | 
|  | POP();                                        \ | 
|  | }                                                 \ | 
|  | } continue; | 
|  |  | 
|  | #define VECTOR_BINARY_FN(inst, field, fn)                   \ | 
|  | case ByteCodeInstruction::inst: {                       \ | 
|  | int count = READ8();                                \ | 
|  | for (int i = count; i > 0; --i) {                   \ | 
|  | sp[-count] = fn(sp[-count].field, sp[0].field); \ | 
|  | POP();                                          \ | 
|  | }                                                   \ | 
|  | } continue; | 
|  |  | 
|  | #define VECTOR_UNARY_FN(inst, fn, field) \ | 
|  | case ByteCodeInstruction::inst: {    \ | 
|  | int count = READ8();             \ | 
|  | for (int i = count; i --> 0; ) { \ | 
|  | sp[-i] = fn(sp[-i].field);   \ | 
|  | }                                \ | 
|  | } continue; | 
|  |  | 
|  | union VValue { | 
|  | VValue() {} | 
|  | VValue(F32 f) : fFloat(f) {} | 
|  | VValue(I32 s) : fSigned(s) {} | 
|  | VValue(U32 u) : fUnsigned(u) {} | 
|  |  | 
|  | F32 fFloat; | 
|  | I32 fSigned; | 
|  | U32 fUnsigned; | 
|  | }; | 
|  |  | 
|  | struct StackFrame { | 
|  | const uint8_t* fCode; | 
|  | const uint8_t* fIP; | 
|  | VValue* fStack; | 
|  | int fParameterCount; | 
|  | }; | 
|  |  | 
|  | static F32 VecMod(F32 a, F32 b) { | 
|  | return a - skvx::trunc(a / b) * b; | 
|  | } | 
|  |  | 
|  | #define spf(index)  sp[index].fFloat | 
|  |  | 
|  | static void CallExternal(const ByteCode* byteCode, const uint8_t*& ip, VValue*& sp, | 
|  | int baseIndex, I32 mask) { | 
|  | int argumentCount = READ8(); | 
|  | int returnCount = READ8(); | 
|  | int target = READ8(); | 
|  | const ExternalValue* v = byteCode->fExternalValues[target]; | 
|  | sp -= argumentCount - 1; | 
|  |  | 
|  | float tmpArgs[4]; | 
|  | float tmpReturn[4]; | 
|  | SkASSERT(argumentCount <= (int)SK_ARRAY_COUNT(tmpArgs)); | 
|  | SkASSERT(returnCount <= (int)SK_ARRAY_COUNT(tmpReturn)); | 
|  |  | 
|  | for (int i = 0; i < VecWidth; ++i) { | 
|  | if (mask[i]) { | 
|  | for (int j = 0; j < argumentCount; ++j) { | 
|  | tmpArgs[j] = sp[j].fFloat[i]; | 
|  | } | 
|  | v->call(baseIndex + i, tmpArgs, tmpReturn); | 
|  | for (int j = 0; j < returnCount; ++j) { | 
|  | sp[j].fFloat[i] = tmpReturn[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp += returnCount - 1; | 
|  | } | 
|  |  | 
|  | static void Inverse2x2(VValue* sp) { | 
|  | F32 a = sp[-3].fFloat, | 
|  | b = sp[-2].fFloat, | 
|  | c = sp[-1].fFloat, | 
|  | d = sp[ 0].fFloat; | 
|  | F32 idet = F32(1) / (a*d - b*c); | 
|  | sp[-3].fFloat = d * idet; | 
|  | sp[-2].fFloat = -b * idet; | 
|  | sp[-1].fFloat = -c * idet; | 
|  | sp[ 0].fFloat = a * idet; | 
|  | } | 
|  |  | 
|  | static void Inverse3x3(VValue* sp) { | 
|  | F32 a11 = sp[-8].fFloat, a12 = sp[-5].fFloat, a13 = sp[-2].fFloat, | 
|  | a21 = sp[-7].fFloat, a22 = sp[-4].fFloat, a23 = sp[-1].fFloat, | 
|  | a31 = sp[-6].fFloat, a32 = sp[-3].fFloat, a33 = sp[ 0].fFloat; | 
|  | F32 idet = F32(1) / (a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - | 
|  | a11 * a23 * a32 - a12 * a21 * a33 - a13 * a22 * a31); | 
|  | sp[-8].fFloat = (a22 * a33 - a23 * a32) * idet; | 
|  | sp[-7].fFloat = (a23 * a31 - a21 * a33) * idet; | 
|  | sp[-6].fFloat = (a21 * a32 - a22 * a31) * idet; | 
|  | sp[-5].fFloat = (a13 * a32 - a12 * a33) * idet; | 
|  | sp[-4].fFloat = (a11 * a33 - a13 * a31) * idet; | 
|  | sp[-3].fFloat = (a12 * a31 - a11 * a32) * idet; | 
|  | sp[-2].fFloat = (a12 * a23 - a13 * a22) * idet; | 
|  | sp[-1].fFloat = (a13 * a21 - a11 * a23) * idet; | 
|  | sp[ 0].fFloat = (a11 * a22 - a12 * a21) * idet; | 
|  | } | 
|  |  | 
|  | static void Inverse4x4(VValue* sp) { | 
|  | F32 a00 = spf(-15), a10 = spf(-11), a20 = spf( -7), a30 = spf( -3), | 
|  | a01 = spf(-14), a11 = spf(-10), a21 = spf( -6), a31 = spf( -2), | 
|  | a02 = spf(-13), a12 = spf( -9), a22 = spf( -5), a32 = spf( -1), | 
|  | a03 = spf(-12), a13 = spf( -8), a23 = spf( -4), a33 = spf(  0); | 
|  |  | 
|  | F32 b00 = a00 * a11 - a01 * a10, | 
|  | b01 = a00 * a12 - a02 * a10, | 
|  | b02 = a00 * a13 - a03 * a10, | 
|  | b03 = a01 * a12 - a02 * a11, | 
|  | b04 = a01 * a13 - a03 * a11, | 
|  | b05 = a02 * a13 - a03 * a12, | 
|  | b06 = a20 * a31 - a21 * a30, | 
|  | b07 = a20 * a32 - a22 * a30, | 
|  | b08 = a20 * a33 - a23 * a30, | 
|  | b09 = a21 * a32 - a22 * a31, | 
|  | b10 = a21 * a33 - a23 * a31, | 
|  | b11 = a22 * a33 - a23 * a32; | 
|  |  | 
|  | F32 idet = F32(1) / | 
|  | (b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06); | 
|  |  | 
|  | b00 *= idet; | 
|  | b01 *= idet; | 
|  | b02 *= idet; | 
|  | b03 *= idet; | 
|  | b04 *= idet; | 
|  | b05 *= idet; | 
|  | b06 *= idet; | 
|  | b07 *= idet; | 
|  | b08 *= idet; | 
|  | b09 *= idet; | 
|  | b10 *= idet; | 
|  | b11 *= idet; | 
|  |  | 
|  | spf(-15) = a11 * b11 - a12 * b10 + a13 * b09; | 
|  | spf(-14) = a02 * b10 - a01 * b11 - a03 * b09; | 
|  | spf(-13) = a31 * b05 - a32 * b04 + a33 * b03; | 
|  | spf(-12) = a22 * b04 - a21 * b05 - a23 * b03; | 
|  | spf(-11) = a12 * b08 - a10 * b11 - a13 * b07; | 
|  | spf(-10) = a00 * b11 - a02 * b08 + a03 * b07; | 
|  | spf( -9) = a32 * b02 - a30 * b05 - a33 * b01; | 
|  | spf( -8) = a20 * b05 - a22 * b02 + a23 * b01; | 
|  | spf( -7) = a10 * b10 - a11 * b08 + a13 * b06; | 
|  | spf( -6) = a01 * b08 - a00 * b10 - a03 * b06; | 
|  | spf( -5) = a30 * b04 - a31 * b02 + a33 * b00; | 
|  | spf( -4) = a21 * b02 - a20 * b04 - a23 * b00; | 
|  | spf( -3) = a11 * b07 - a10 * b09 - a12 * b06; | 
|  | spf( -2) = a00 * b09 - a01 * b07 + a02 * b06; | 
|  | spf( -1) = a31 * b01 - a30 * b03 - a32 * b00; | 
|  | spf(  0) = a20 * b03 - a21 * b01 + a22 * b00; | 
|  | } | 
|  |  | 
|  | static bool InnerRun(const ByteCode* byteCode, const ByteCodeFunction* f, VValue* stack, | 
|  | float* outReturn[], VValue globals[], const float uniforms[], | 
|  | bool stripedOutput, int N, int baseIndex) { | 
|  | // Needs to be the first N non-negative integers, at least as large as VecWidth | 
|  | static const Interpreter::I32 gLanes = { | 
|  | 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 | 
|  | }; | 
|  |  | 
|  | VValue* sp = stack + f->fParameterCount + f->fLocalCount - 1; | 
|  |  | 
|  | #define POP() (*(sp--)) | 
|  | #define PUSH(v) (sp[1] = v, ++sp) | 
|  |  | 
|  | const uint8_t* code = f->fCode.data(); | 
|  | const uint8_t* ip = code; | 
|  | std::vector<StackFrame> frames; | 
|  |  | 
|  | I32 condStack[16];  // Independent condition masks | 
|  | I32 maskStack[16];  // Combined masks (eg maskStack[0] & maskStack[1] & ...) | 
|  | I32 contStack[16];  // Continue flags for loops | 
|  | I32 loopStack[16];  // Loop execution masks | 
|  | condStack[0] = maskStack[0] = (gLanes < N); | 
|  | contStack[0] = I32( 0); | 
|  | loopStack[0] = I32(~0); | 
|  | I32* condPtr = condStack; | 
|  | I32* maskPtr = maskStack; | 
|  | I32* contPtr = contStack; | 
|  | I32* loopPtr = loopStack; | 
|  |  | 
|  | if (f->fConditionCount + 1 > (int)SK_ARRAY_COUNT(condStack) || | 
|  | f->fLoopCount + 1 > (int)SK_ARRAY_COUNT(loopStack)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto mask = [&]() { return *maskPtr & *loopPtr; }; | 
|  |  | 
|  | for (;;) { | 
|  | #ifdef TRACE | 
|  | printf("at %3d ", (int) (ip - code)); | 
|  | disassemble_instruction(ip); | 
|  | printf(" (stack: %d)\n", (int) (sp - stack) + 1); | 
|  | #endif | 
|  | ByteCodeInstruction inst = READ_INST(); | 
|  | switch (inst) { | 
|  |  | 
|  | VECTOR_UNARY_FN(kAbs, skvx::abs, fFloat) | 
|  |  | 
|  | VECTOR_BINARY_OP(kAddF, fFloat, +) | 
|  | VECTOR_BINARY_OP(kAddI, fSigned, +) | 
|  |  | 
|  | // Booleans are integer masks: 0/~0 for false/true. So bitwise ops do what we want: | 
|  | VECTOR_BINARY_OP(kAndB, fSigned, &) | 
|  | VECTOR_BINARY_OP(kOrB,  fSigned, |) | 
|  | VECTOR_BINARY_OP(kXorB, fSigned, ^) | 
|  | VECTOR_UNARY_FN(kNotB, std::bit_not<>{}, fSigned) | 
|  |  | 
|  | case ByteCodeInstruction::kBranch: | 
|  | ip = code + READ16(); | 
|  | continue; | 
|  |  | 
|  | case ByteCodeInstruction::kCall: { | 
|  | // Precursor code reserved space for the return value, and pushed all parameters to | 
|  | // the stack. Update our bottom of stack to point at the first parameter, and our | 
|  | // sp to point past those parameters (plus space for locals). | 
|  | int target = READ8(); | 
|  | const ByteCodeFunction* fn = byteCode->fFunctions[target].get(); | 
|  | if (skvx::any(mask())) { | 
|  | frames.push_back({ code, ip, stack, fn->fParameterCount }); | 
|  | ip = code = fn->fCode.data(); | 
|  | stack = sp - fn->fParameterCount + 1; | 
|  | sp = stack + fn->fParameterCount + fn->fLocalCount - 1; | 
|  | // As we did in runStriped(), zero locals so they're safe to mask-store into. | 
|  | for (int i = fn->fParameterCount; i < fn->fParameterCount + fn->fLocalCount; i++) { | 
|  | stack[i].fFloat = 0.0f; | 
|  | } | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kCallExternal: | 
|  | CallExternal(byteCode, ip, sp, baseIndex, mask()); | 
|  | continue; | 
|  |  | 
|  | VECTOR_UNARY_FN(kCeil, skvx::ceil, fFloat) | 
|  |  | 
|  | case ByteCodeInstruction::kClampIndex: { | 
|  | int length = READ8(); | 
|  | if (skvx::any(mask() & ((sp[0].fSigned < 0) | (sp[0].fSigned >= length)))) { | 
|  | return false; | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | VECTOR_BINARY_OP(kCompareIEQ,   fSigned,   ==) | 
|  | VECTOR_BINARY_OP(kCompareFEQ,   fFloat,    ==) | 
|  | VECTOR_BINARY_OP(kCompareINEQ,  fSigned,   !=) | 
|  | VECTOR_BINARY_OP(kCompareFNEQ,  fFloat,    !=) | 
|  | VECTOR_BINARY_OP(kCompareSGT,   fSigned,   >) | 
|  | VECTOR_BINARY_OP(kCompareUGT,   fUnsigned, >) | 
|  | VECTOR_BINARY_OP(kCompareFGT,   fFloat,    >) | 
|  | VECTOR_BINARY_OP(kCompareSGTEQ, fSigned,   >=) | 
|  | VECTOR_BINARY_OP(kCompareUGTEQ, fUnsigned, >=) | 
|  | VECTOR_BINARY_OP(kCompareFGTEQ, fFloat,    >=) | 
|  | VECTOR_BINARY_OP(kCompareSLT,   fSigned,   <) | 
|  | VECTOR_BINARY_OP(kCompareULT,   fUnsigned, <) | 
|  | VECTOR_BINARY_OP(kCompareFLT,   fFloat,    <) | 
|  | VECTOR_BINARY_OP(kCompareSLTEQ, fSigned,   <=) | 
|  | VECTOR_BINARY_OP(kCompareULTEQ, fUnsigned, <=) | 
|  | VECTOR_BINARY_OP(kCompareFLTEQ, fFloat,    <=) | 
|  |  | 
|  | VECTOR_UNARY_FN(kConvertFtoI, skvx::cast<int>, fFloat) | 
|  | VECTOR_UNARY_FN(kConvertStoF, skvx::cast<float>, fSigned) | 
|  | VECTOR_UNARY_FN(kConvertUtoF, skvx::cast<float>, fUnsigned) | 
|  |  | 
|  | VECTOR_UNARY_FN(kACos, [](auto x) { return skvx::map(acosf, x); }, fFloat) | 
|  | VECTOR_UNARY_FN(kCos, [](auto x) { return skvx::map(cosf, x); }, fFloat) | 
|  |  | 
|  | VECTOR_BINARY_MASKED_OP(kDivideS, fSigned, /) | 
|  | VECTOR_BINARY_MASKED_OP(kDivideU, fUnsigned, /) | 
|  | VECTOR_BINARY_OP(kDivideF, fFloat, /) | 
|  |  | 
|  | case ByteCodeInstruction::kDup: { | 
|  | int count = READ8(); | 
|  | memcpy(sp + 1, sp - count + 1, count * sizeof(VValue)); | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | VECTOR_UNARY_FN(kExp, [](auto x) { return skvx::map(expf, x); }, fFloat) | 
|  | VECTOR_UNARY_FN(kExp2, [](auto x) { return skvx::map(exp2f, x); }, fFloat) | 
|  |  | 
|  | VECTOR_UNARY_FN(kFloor, skvx::floor, fFloat) | 
|  | VECTOR_UNARY_FN(kFract, skvx::fract, fFloat) | 
|  |  | 
|  | case ByteCodeInstruction::kInverse2x2: | 
|  | Inverse2x2(sp); | 
|  | continue; | 
|  | case ByteCodeInstruction::kInverse3x3: | 
|  | Inverse3x3(sp); | 
|  | continue; | 
|  | case ByteCodeInstruction::kInverse4x4: | 
|  | Inverse4x4(sp); | 
|  | continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLerp: { | 
|  | int count = READ8(); | 
|  | VValue* T = sp - count + 1, | 
|  | * B = T - count, | 
|  | * A = B - count; | 
|  | for (int i = count; i --> 0; ) { | 
|  | A[i].fFloat += (B[i].fFloat - A[i].fFloat) * T[i].fFloat; | 
|  | } | 
|  | sp -= 2 * count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoad: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | memcpy(sp + 1, stack + slot, count * sizeof(VValue)); | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoadGlobal: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | memcpy(sp + 1, globals + slot, count * sizeof(VValue)); | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoadUniform: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | sp[i + 1].fFloat = uniforms[slot + i]; | 
|  | } | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoadExtended: { | 
|  | int count = READ8(); | 
|  | I32 src = POP().fSigned; | 
|  | I32 m = mask(); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | for (int j = 0; j < VecWidth; ++j) { | 
|  | if (m[j]) { | 
|  | sp[i + 1].fSigned[j] = stack[src[j] + i].fSigned[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoadExtendedGlobal: { | 
|  | int count = READ8(); | 
|  | I32 src = POP().fSigned; | 
|  | I32 m = mask(); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | for (int j = 0; j < VecWidth; ++j) { | 
|  | if (m[j]) { | 
|  | sp[i + 1].fSigned[j] = globals[src[j] + i].fSigned[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoadExtendedUniform: { | 
|  | int count = READ8(); | 
|  | I32 src = POP().fSigned; | 
|  | I32 m = mask(); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | for (int j = 0; j < VecWidth; ++j) { | 
|  | if (m[j]) { | 
|  | sp[i + 1].fFloat[j] = uniforms[src[j] + i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | VECTOR_UNARY_FN(kLog, [](auto x) { return skvx::map(logf, x); }, fFloat) | 
|  | VECTOR_UNARY_FN(kLog2, [](auto x) { return skvx::map(log2f, x); }, fFloat) | 
|  |  | 
|  | case ByteCodeInstruction::kMatrixToMatrix: { | 
|  | int srcCols = READ8(); | 
|  | int srcRows = READ8(); | 
|  | int dstCols = READ8(); | 
|  | int dstRows = READ8(); | 
|  | SkASSERT(srcCols >= 2 && srcCols <= 4); | 
|  | SkASSERT(srcRows >= 2 && srcRows <= 4); | 
|  | SkASSERT(dstCols >= 2 && dstCols <= 4); | 
|  | SkASSERT(dstRows >= 2 && dstRows <= 4); | 
|  | F32 tmp[16]; | 
|  | memset(tmp, 0, sizeof(tmp)); | 
|  | tmp[0] = tmp[5] = tmp[10] = tmp[15] = F32(1.0f); | 
|  | for (int c = srcCols - 1; c >= 0; --c) { | 
|  | for (int r = srcRows - 1; r >= 0; --r) { | 
|  | tmp[c*4 + r] = POP().fFloat; | 
|  | } | 
|  | } | 
|  | for (int c = 0; c < dstCols; ++c) { | 
|  | for (int r = 0; r < dstRows; ++r) { | 
|  | PUSH(tmp[c*4 + r]); | 
|  | } | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kMatrixMultiply: { | 
|  | int lCols = READ8(); | 
|  | int lRows = READ8(); | 
|  | int rCols = READ8(); | 
|  | int rRows = lCols; | 
|  | F32 tmp[16] = { 0.0f }; | 
|  | F32* B = &(sp - (rCols * rRows) + 1)->fFloat; | 
|  | F32* A = B - (lCols * lRows); | 
|  | for (int c = 0; c < rCols; ++c) { | 
|  | for (int r = 0; r < lRows; ++r) { | 
|  | for (int j = 0; j < lCols; ++j) { | 
|  | tmp[c*lRows + r] += A[j*lRows + r] * B[c*rRows + j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp -= (lCols * lRows) + (rCols * rRows); | 
|  | memcpy(sp + 1, tmp, rCols * lRows * sizeof(VValue)); | 
|  | sp += (rCols * lRows); | 
|  | } continue; | 
|  |  | 
|  | VECTOR_BINARY_FN(kMaxF, fFloat, skvx::max) | 
|  | VECTOR_BINARY_FN(kMaxS, fSigned, skvx::max) | 
|  | VECTOR_BINARY_FN(kMinF, fFloat, skvx::min) | 
|  | VECTOR_BINARY_FN(kMinS, fSigned, skvx::min) | 
|  |  | 
|  | case ByteCodeInstruction::kMix: { | 
|  | int count = READ8(); | 
|  | for (int i = count; i --> 0; ) { | 
|  | // GLSL's arguments are mix(else, true, cond) | 
|  | sp[-(2*count + i)] = skvx::if_then_else(sp[-(          i)].fSigned, | 
|  | sp[-(  count + i)].fFloat, | 
|  | sp[-(2*count + i)].fFloat); | 
|  | } | 
|  | sp -= 2 * count; | 
|  | } continue; | 
|  |  | 
|  | VECTOR_BINARY_FN(kMod, fFloat, [](auto x, auto y) { | 
|  | return x - y * skvx::floor(x / y); | 
|  | }) | 
|  |  | 
|  | VECTOR_BINARY_OP(kMultiplyI, fSigned, *) | 
|  | VECTOR_BINARY_OP(kMultiplyF, fFloat, *) | 
|  |  | 
|  | VECTOR_UNARY_FN(kNegateF, std::negate<>{}, fFloat) | 
|  | VECTOR_UNARY_FN(kNegateI, std::negate<>{}, fSigned) | 
|  |  | 
|  | case ByteCodeInstruction::kPop: | 
|  | sp -= READ8(); | 
|  | continue; | 
|  |  | 
|  | VECTOR_BINARY_FN(kPow, fFloat, [](auto x, auto y) { return skvx::map(powf, x,y); }) | 
|  |  | 
|  | case ByteCodeInstruction::kPushImmediate: | 
|  | PUSH(U32(READ32())); | 
|  | continue; | 
|  |  | 
|  | case ByteCodeInstruction::kReadExternal: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | SkASSERT(count <= 4); | 
|  | float tmp[4]; | 
|  | I32 m = mask(); | 
|  | for (int i = 0; i < VecWidth; ++i) { | 
|  | if (m[i]) { | 
|  | byteCode->fExternalValues[slot]->read(baseIndex + i, tmp); | 
|  | for (int j = 0; j < count; ++j) { | 
|  | sp[j + 1].fFloat[i] = tmp[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp += count; | 
|  | } continue; | 
|  |  | 
|  | VECTOR_BINARY_FN(kRemainderF, fFloat, VecMod) | 
|  | VECTOR_BINARY_MASKED_OP(kRemainderS, fSigned, %) | 
|  | VECTOR_BINARY_MASKED_OP(kRemainderU, fUnsigned, %) | 
|  |  | 
|  | case ByteCodeInstruction::kReserve: | 
|  | sp += READ8(); | 
|  | continue; | 
|  |  | 
|  | case ByteCodeInstruction::kReturn: { | 
|  | int count = READ8(); | 
|  | if (frames.empty()) { | 
|  | if (outReturn) { | 
|  | VValue* src = sp - count + 1; | 
|  | if (stripedOutput) { | 
|  | for (int i = 0; i < count; ++i) { | 
|  | memcpy(outReturn[i], &src->fFloat, N * sizeof(float)); | 
|  | ++src; | 
|  | } | 
|  | } else { | 
|  | float* outPtr = outReturn[0]; | 
|  | for (int i = 0; i < count; ++i) { | 
|  | for (int j = 0; j < N; ++j) { | 
|  | outPtr[count * j] = src->fFloat[j]; | 
|  | } | 
|  | ++outPtr; | 
|  | ++src; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } else { | 
|  | // When we were called, the caller reserved stack space for their copy of our | 
|  | // return value, then 'stack' was positioned after that, where our parameters | 
|  | // were placed. Copy our return values to their reserved area. | 
|  | memcpy(stack - count, sp - count + 1, count * sizeof(VValue)); | 
|  |  | 
|  | // Now move the stack pointer to the end of the passed-in parameters. This odd | 
|  | // calling convention requires the caller to pop the arguments after calling, | 
|  | // but allows them to store any out-parameters back during that unwinding. | 
|  | // After that sequence finishes, the return value will be the top of the stack. | 
|  | const StackFrame& frame(frames.back()); | 
|  | sp = stack + frame.fParameterCount - 1; | 
|  | stack = frame.fStack; | 
|  | code = frame.fCode; | 
|  | ip = frame.fIP; | 
|  | frames.pop_back(); | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kScalarToMatrix: { | 
|  | int cols = READ8(); | 
|  | int rows = READ8(); | 
|  | VValue v = POP(); | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | PUSH(c == r ? v : F32(0.0f)); | 
|  | } | 
|  | } | 
|  | }  continue; | 
|  |  | 
|  | case ByteCodeInstruction::kShiftLeft: | 
|  | sp[0] = sp[0].fSigned << READ8(); | 
|  | continue; | 
|  | case ByteCodeInstruction::kShiftRightS: | 
|  | sp[0] = sp[0].fSigned >> READ8(); | 
|  | continue; | 
|  | case ByteCodeInstruction::kShiftRightU: | 
|  | sp[0] = sp[0].fUnsigned >> READ8(); | 
|  | continue; | 
|  |  | 
|  | VECTOR_UNARY_FN(kASin, [](auto x) { return skvx::map(asinf, x); }, fFloat) | 
|  | VECTOR_UNARY_FN(kSin, [](auto x) { return skvx::map(sinf, x); }, fFloat) | 
|  | VECTOR_UNARY_FN(kInvSqrt, [](auto x) { return 1.0f / skvx::sqrt(x); }, fFloat) | 
|  | VECTOR_UNARY_FN(kSqrt, skvx::sqrt, fFloat) | 
|  | VECTOR_UNARY_FN(kSign, | 
|  | [](auto x) { | 
|  | return skvx::if_then_else(x < 0, F32(-1.0f), | 
|  | skvx::if_then_else(x > 0, F32( 1.0f), | 
|  | F32( 0.0f))); | 
|  | }, | 
|  | fFloat) | 
|  | VECTOR_BINARY_FN(kStep, fFloat, [](auto edge, auto x) { | 
|  | return skvx::if_then_else(x < edge, F32(0.0f), F32(1.0f)); | 
|  | }) | 
|  |  | 
|  | case ByteCodeInstruction::kStore: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | auto m = mask(); | 
|  | for (int i = count; i --> 0; ) { | 
|  | stack[slot+i] = skvx::if_then_else(m, POP().fFloat, stack[slot+i].fFloat); | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kStoreGlobal: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | auto m = mask(); | 
|  | for (int i = count; i --> 0; ) { | 
|  | globals[slot+i] = skvx::if_then_else(m, POP().fFloat, globals[slot+i].fFloat); | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kStoreExtended: { | 
|  | int count = READ8(); | 
|  | I32 target = POP().fSigned; | 
|  | VValue* src = sp - count + 1; | 
|  | I32 m = mask(); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | for (int j = 0; j < VecWidth; ++j) { | 
|  | if (m[j]) { | 
|  | stack[target[j] + i].fSigned[j] = src[i].fSigned[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp -= count; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kStoreExtendedGlobal: { | 
|  | int count = READ8(); | 
|  | I32 target = POP().fSigned; | 
|  | VValue* src = sp - count + 1; | 
|  | I32 m = mask(); | 
|  | for (int i = 0; i < count; ++i) { | 
|  | for (int j = 0; j < VecWidth; ++j) { | 
|  | if (m[j]) { | 
|  | globals[target[j] + i].fSigned[j] = src[i].fSigned[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | sp -= count; | 
|  | } continue; | 
|  |  | 
|  | VECTOR_BINARY_OP(kSubtractI, fSigned, -) | 
|  | VECTOR_BINARY_OP(kSubtractF, fFloat, -) | 
|  |  | 
|  | case ByteCodeInstruction::kSwizzle: { | 
|  | VValue tmp[4]; | 
|  | for (int i = READ8() - 1; i >= 0; --i) { | 
|  | tmp[i] = POP(); | 
|  | } | 
|  | for (int i = READ8() - 1; i >= 0; --i) { | 
|  | PUSH(tmp[READ8()]); | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | VECTOR_UNARY_FN(kATan, [](auto x) { return skvx::map(atanf, x); }, fFloat) | 
|  | VECTOR_BINARY_FN(kATan2, fFloat, [](auto y, auto x) { return skvx::map(atan2f, y, x); }) | 
|  |  | 
|  | VECTOR_UNARY_FN(kTan, [](auto x) { return skvx::map(tanf, x); }, fFloat) | 
|  |  | 
|  | case ByteCodeInstruction::kWriteExternal: { | 
|  | int count = READ8(), | 
|  | slot  = READ8(); | 
|  | SkASSERT(count <= 4); | 
|  | float tmp[4]; | 
|  | I32 m = mask(); | 
|  | sp -= count; | 
|  | for (int i = 0; i < VecWidth; ++i) { | 
|  | if (m[i]) { | 
|  | for (int j = 0; j < count; ++j) { | 
|  | tmp[j] = sp[j + 1].fFloat[i]; | 
|  | } | 
|  | byteCode->fExternalValues[slot]->write(baseIndex + i, tmp); | 
|  | } | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kMaskPush: | 
|  | condPtr[1] = POP().fSigned; | 
|  | maskPtr[1] = maskPtr[0] & condPtr[1]; | 
|  | ++condPtr; ++maskPtr; | 
|  | continue; | 
|  | case ByteCodeInstruction::kMaskPop: | 
|  | --condPtr; --maskPtr; | 
|  | continue; | 
|  | case ByteCodeInstruction::kMaskNegate: | 
|  | maskPtr[0] = maskPtr[-1] & ~condPtr[0]; | 
|  | continue; | 
|  | case ByteCodeInstruction::kMaskBlend: { | 
|  | int count = READ8(); | 
|  | I32 m = condPtr[0]; | 
|  | --condPtr; --maskPtr; | 
|  | for (int i = 0; i < count; ++i) { | 
|  | sp[-count] = skvx::if_then_else(m, sp[-count].fFloat, sp[0].fFloat); | 
|  | --sp; | 
|  | } | 
|  | } continue; | 
|  | case ByteCodeInstruction::kBranchIfAllFalse: { | 
|  | int target = READ16(); | 
|  | if (!skvx::any(mask())) { | 
|  | ip = code + target; | 
|  | } | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoopBegin: | 
|  | contPtr[1] = 0; | 
|  | loopPtr[1] = loopPtr[0]; | 
|  | ++contPtr; ++loopPtr; | 
|  | continue; | 
|  | case ByteCodeInstruction::kLoopNext: | 
|  | *loopPtr |= *contPtr; | 
|  | *contPtr = 0; | 
|  | continue; | 
|  | case ByteCodeInstruction::kLoopMask: | 
|  | *loopPtr &= POP().fSigned; | 
|  | continue; | 
|  | case ByteCodeInstruction::kLoopEnd: | 
|  | --contPtr; --loopPtr; | 
|  | continue; | 
|  | case ByteCodeInstruction::kLoopBreak: | 
|  | *loopPtr &= ~mask(); | 
|  | continue; | 
|  | case ByteCodeInstruction::kLoopContinue: { | 
|  | I32 m = mask(); | 
|  | *contPtr |=  m; | 
|  | *loopPtr &= ~m; | 
|  | } continue; | 
|  |  | 
|  | case ByteCodeInstruction::kLoadFragCoord: | 
|  | case ByteCodeInstruction::kSample: | 
|  | case ByteCodeInstruction::kSampleExplicit: | 
|  | case ByteCodeInstruction::kSampleMatrix: | 
|  | default: | 
|  | // TODO: Support these? | 
|  | SkASSERT(false); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }; // class Interpreter | 
|  |  | 
|  | #endif // SK_ENABLE_SKSL_INTERPRETER | 
|  |  | 
|  | #undef spf | 
|  |  | 
|  | void ByteCodeFunction::disassemble() const { | 
|  | #if defined(SK_ENABLE_SKSL_INTERPRETER) | 
|  | const uint8_t* ip = fCode.data(); | 
|  | while (ip < fCode.data() + fCode.size()) { | 
|  | printf("%d: ", (int)(ip - fCode.data())); | 
|  | ip = Interpreter::DisassembleInstruction(ip); | 
|  | printf("\n"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool ByteCode::run(const ByteCodeFunction* f, | 
|  | float* args, int argCount, | 
|  | float* outReturn, int returnCount, | 
|  | const float* uniforms, int uniformCount) const { | 
|  | #if defined(SK_ENABLE_SKSL_INTERPRETER) | 
|  | Interpreter::VValue stack[128]; | 
|  | int stackNeeded = f->fParameterCount + f->fLocalCount + f->fStackCount; | 
|  | if (stackNeeded > (int)SK_ARRAY_COUNT(stack)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (argCount != f->fParameterCount || | 
|  | returnCount != f->fReturnCount || | 
|  | uniformCount != fUniformSlotCount) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Interpreter::VValue globals[32]; | 
|  | if (fGlobalSlotCount > (int)SK_ARRAY_COUNT(globals)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Transpose args into stack | 
|  | { | 
|  | float* src = args; | 
|  | float* dst = (float*)stack; | 
|  | for (int i = 0; i < argCount; ++i) { | 
|  | *dst = *src++; | 
|  | dst += VecWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool stripedOutput = false; | 
|  | float** outArray = outReturn ? &outReturn : nullptr; | 
|  | if (!Interpreter::InnerRun(this, f, stack, outArray, globals, uniforms, stripedOutput, 1, 0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Transpose out parameters back | 
|  | { | 
|  | float* dst = args; | 
|  | float* src = (float*)stack; | 
|  | for (const auto& p : f->fParameters) { | 
|  | if (p.fIsOutParameter) { | 
|  | for (int i = p.fSlotCount; i > 0; --i) { | 
|  | *dst++ = *src; | 
|  | src += VecWidth; | 
|  | } | 
|  | } else { | 
|  | dst += p.fSlotCount; | 
|  | src += p.fSlotCount * VecWidth; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | #else | 
|  | SkDEBUGFAIL("ByteCode interpreter not enabled"); | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool ByteCode::runStriped(const ByteCodeFunction* f, int N, | 
|  | float* args[], int argCount, | 
|  | float* outReturn[], int returnCount, | 
|  | const float* uniforms, int uniformCount) const { | 
|  | #if defined(SK_ENABLE_SKSL_INTERPRETER) | 
|  | Interpreter::VValue stack[192]; | 
|  | int stackNeeded = f->fParameterCount + f->fLocalCount + f->fStackCount; | 
|  | if (stackNeeded > (int)SK_ARRAY_COUNT(stack)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (argCount != f->fParameterCount || | 
|  | returnCount != f->fReturnCount || | 
|  | uniformCount != fUniformSlotCount) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Interpreter::VValue globals[32]; | 
|  | if (fGlobalSlotCount > (int)SK_ARRAY_COUNT(globals)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // innerRun just takes outArgs, so clear it if the count is zero | 
|  | if (returnCount == 0) { | 
|  | outReturn = nullptr; | 
|  | } | 
|  |  | 
|  | // The instructions to store to locals and globals mask in the original value, | 
|  | // so they technically need to be initialized (to any value). | 
|  | for (int i = f->fParameterCount; i < f->fParameterCount + f->fLocalCount; i++) { | 
|  | stack[i].fFloat = 0.0f; | 
|  | } | 
|  | for (int i = 0; i < fGlobalSlotCount; i++) { | 
|  | globals[i].fFloat = 0.0f; | 
|  | } | 
|  |  | 
|  | int baseIndex = 0; | 
|  |  | 
|  | while (N) { | 
|  | int w = std::min(N, VecWidth); | 
|  |  | 
|  | // Copy args into stack | 
|  | for (int i = 0; i < argCount; ++i) { | 
|  | memcpy((void*)(stack + i), args[i], w * sizeof(float)); | 
|  | } | 
|  |  | 
|  | bool stripedOutput = true; | 
|  | if (!Interpreter::InnerRun(this, f, stack, outReturn, globals, uniforms, stripedOutput, w, | 
|  | baseIndex)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Copy out parameters back | 
|  | int slot = 0; | 
|  | for (const auto& p : f->fParameters) { | 
|  | if (p.fIsOutParameter) { | 
|  | for (int i = slot; i < slot + p.fSlotCount; ++i) { | 
|  | memcpy(args[i], stack + i, w * sizeof(float)); | 
|  | } | 
|  | } | 
|  | slot += p.fSlotCount; | 
|  | } | 
|  |  | 
|  | // Step each argument pointer ahead | 
|  | for (int i = 0; i < argCount; ++i) { | 
|  | args[i] += w; | 
|  | } | 
|  | N -= w; | 
|  | baseIndex += w; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | #else | 
|  | SkDEBUGFAIL("ByteCode interpreter not enabled"); | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | } // namespace SkSL | 
|  |  | 
|  | #endif |