|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "CurveIntersection.h" | 
|  | #include "Extrema.h" | 
|  | #include "IntersectionUtilities.h" | 
|  | #include "LineParameters.h" | 
|  |  | 
|  | static double interp_quad_coords(double a, double b, double c, double t) | 
|  | { | 
|  | double ab = interp(a, b, t); | 
|  | double bc = interp(b, c, t); | 
|  | return interp(ab, bc, t); | 
|  | } | 
|  |  | 
|  | static int coincident_line(const Quadratic& quad, Quadratic& reduction) { | 
|  | reduction[0] = reduction[1] = quad[0]; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int vertical_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | 
|  | Quadratic& reduction) { | 
|  | double tValue; | 
|  | reduction[0] = quad[0]; | 
|  | reduction[1] = quad[2]; | 
|  | if (reduceStyle == kReduceOrder_TreatAsFill) { | 
|  | return 2; | 
|  | } | 
|  | int smaller = reduction[1].y > reduction[0].y; | 
|  | int larger = smaller ^ 1; | 
|  | if (findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) { | 
|  | double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue); | 
|  | if (reduction[smaller].y > yExtrema) { | 
|  | reduction[smaller].y = yExtrema; | 
|  | } else if (reduction[larger].y < yExtrema) { | 
|  | reduction[larger].y = yExtrema; | 
|  | } | 
|  | } | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | static int horizontal_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | 
|  | Quadratic& reduction) { | 
|  | double tValue; | 
|  | reduction[0] = quad[0]; | 
|  | reduction[1] = quad[2]; | 
|  | if (reduceStyle == kReduceOrder_TreatAsFill) { | 
|  | return 2; | 
|  | } | 
|  | int smaller = reduction[1].x > reduction[0].x; | 
|  | int larger = smaller ^ 1; | 
|  | if (findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) { | 
|  | double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); | 
|  | if (reduction[smaller].x > xExtrema) { | 
|  | reduction[smaller].x = xExtrema; | 
|  | }  else if (reduction[larger].x < xExtrema) { | 
|  | reduction[larger].x = xExtrema; | 
|  | } | 
|  | } | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | static int check_linear(const Quadratic& quad, ReduceOrder_Styles reduceStyle, | 
|  | int minX, int maxX, int minY, int maxY, Quadratic& reduction) { | 
|  | int startIndex = 0; | 
|  | int endIndex = 2; | 
|  | while (quad[startIndex].approximatelyEqual(quad[endIndex])) { | 
|  | --endIndex; | 
|  | if (endIndex == 0) { | 
|  | printf("%s shouldn't get here if all four points are about equal", __FUNCTION__); | 
|  | SkASSERT(0); | 
|  | } | 
|  | } | 
|  | if (!isLinear(quad, startIndex, endIndex)) { | 
|  | return 0; | 
|  | } | 
|  | // four are colinear: return line formed by outside | 
|  | reduction[0] = quad[0]; | 
|  | reduction[1] = quad[2]; | 
|  | if (reduceStyle == kReduceOrder_TreatAsFill) { | 
|  | return 2; | 
|  | } | 
|  | int sameSide; | 
|  | bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y; | 
|  | if (useX) { | 
|  | sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x); | 
|  | } else { | 
|  | sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y); | 
|  | } | 
|  | if ((sameSide & 3) != 2) { | 
|  | return 2; | 
|  | } | 
|  | double tValue; | 
|  | int root; | 
|  | if (useX) { | 
|  | root = findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue); | 
|  | } else { | 
|  | root = findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue); | 
|  | } | 
|  | if (root) { | 
|  | _Point extrema; | 
|  | extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); | 
|  | extrema.y = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue); | 
|  | // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller | 
|  | int replace; | 
|  | if (useX) { | 
|  | if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) { | 
|  | return 2; | 
|  | } | 
|  | replace = (extrema.x < quad[0].x | extrema.x < quad[2].x) | 
|  | ^ (quad[0].x < quad[2].x); | 
|  | } else { | 
|  | if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) { | 
|  | return 2; | 
|  | } | 
|  | replace = (extrema.y < quad[0].y | extrema.y < quad[2].y) | 
|  | ^ (quad[0].y < quad[2].y); | 
|  | } | 
|  | reduction[replace] = extrema; | 
|  | } | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | bool isLinear(const Quadratic& quad, int startIndex, int endIndex) { | 
|  | LineParameters lineParameters; | 
|  | lineParameters.quadEndPoints(quad, startIndex, endIndex); | 
|  | // FIXME: maybe it's possible to avoid this and compare non-normalized | 
|  | lineParameters.normalize(); | 
|  | double distance = lineParameters.controlPtDistance(quad); | 
|  | return approximately_zero(distance); | 
|  | } | 
|  |  | 
|  | // reduce to a quadratic or smaller | 
|  | // look for identical points | 
|  | // look for all four points in a line | 
|  | // note that three points in a line doesn't simplify a cubic | 
|  | // look for approximation with single quadratic | 
|  | // save approximation with multiple quadratics for later | 
|  | int reduceOrder(const Quadratic& quad, Quadratic& reduction, ReduceOrder_Styles reduceStyle) { | 
|  | int index, minX, maxX, minY, maxY; | 
|  | int minXSet, minYSet; | 
|  | minX = maxX = minY = maxY = 0; | 
|  | minXSet = minYSet = 0; | 
|  | for (index = 1; index < 3; ++index) { | 
|  | if (quad[minX].x > quad[index].x) { | 
|  | minX = index; | 
|  | } | 
|  | if (quad[minY].y > quad[index].y) { | 
|  | minY = index; | 
|  | } | 
|  | if (quad[maxX].x < quad[index].x) { | 
|  | maxX = index; | 
|  | } | 
|  | if (quad[maxY].y < quad[index].y) { | 
|  | maxY = index; | 
|  | } | 
|  | } | 
|  | for (index = 0; index < 3; ++index) { | 
|  | if (AlmostEqualUlps(quad[index].x, quad[minX].x)) { | 
|  | minXSet |= 1 << index; | 
|  | } | 
|  | if (AlmostEqualUlps(quad[index].y, quad[minY].y)) { | 
|  | minYSet |= 1 << index; | 
|  | } | 
|  | } | 
|  | if (minXSet == 0x7) { // test for vertical line | 
|  | if (minYSet == 0x7) { // return 1 if all four are coincident | 
|  | return coincident_line(quad, reduction); | 
|  | } | 
|  | return vertical_line(quad, reduceStyle, reduction); | 
|  | } | 
|  | if (minYSet == 0xF) { // test for horizontal line | 
|  | return horizontal_line(quad, reduceStyle, reduction); | 
|  | } | 
|  | int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, reduction); | 
|  | if (result) { | 
|  | return result; | 
|  | } | 
|  | memcpy(reduction, quad, sizeof(Quadratic)); | 
|  | return 3; | 
|  | } |