blob: 58241af54fbb3120524afc23ffce4979fe35ba2e [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKSL_IRNODE
#define SKSL_IRNODE
#include "include/private/SkTArray.h"
#include "src/sksl/SkSLASTNode.h"
#include "src/sksl/SkSLLexer.h"
#include "src/sksl/SkSLModifiersPool.h"
#include "src/sksl/SkSLPool.h"
#include "src/sksl/SkSLString.h"
#include <algorithm>
#include <atomic>
#include <unordered_set>
#include <vector>
namespace SkSL {
class Expression;
class ExternalValue;
class FunctionDeclaration;
struct FunctionDefinition;
class Statement;
class Symbol;
class SymbolTable;
class Type;
class Variable;
class VariableReference;
enum class FieldAccessOwnerKind : int8_t;
enum class VariableRefKind : int8_t;
enum class VariableStorage : int8_t;
using ExpressionArray = SkSTArray<2, std::unique_ptr<Expression>>;
using StatementArray = SkSTArray<2, std::unique_ptr<Statement>>;
/**
* Represents a node in the intermediate representation (IR) tree. The IR is a fully-resolved
* version of the program (all types determined, everything validated), ready for code generation.
*/
class IRNode {
public:
virtual ~IRNode();
IRNode& operator=(const IRNode& other) {
// Need to have a copy assignment operator because Type requires it, but can't use the
// default version until we finish migrating away from std::unique_ptr children. For now,
// just assert that there are no children (we could theoretically clone them, but we never
// actually copy nodes containing children).
SkASSERT(other.fExpressionChildren.empty());
fKind = other.fKind;
fOffset = other.fOffset;
fData = other.fData;
return *this;
}
virtual String description() const = 0;
// character offset of this element within the program being compiled, for error reporting
// purposes
int fOffset;
// Override operator new and delete to allow us to control allocation behavior.
static void* operator new(const size_t size) {
// TODO: once all IRNodes hold their data in fData, everything should come out of the pool,
// and this check should become an assertion.
if (size == sizeof(IRNode)) {
return Pool::AllocIRNode();
}
return ::operator new(size);
}
static void operator delete(void* ptr) {
Pool::FreeIRNode(ptr);
}
protected:
struct BlockData {
std::shared_ptr<SymbolTable> fSymbolTable;
// if isScope is false, this is just a group of statements rather than an actual
// language-level block. This allows us to pass around multiple statements as if they were a
// single unit, with no semantic impact.
bool fIsScope;
};
struct BoolLiteralData {
const Type* fType;
bool fValue;
};
struct EnumData {
StringFragment fTypeName;
std::shared_ptr<SymbolTable> fSymbols;
bool fIsSharedWithCpp;
bool fIsBuiltin;
};
struct ExternalValueData {
const Type* fType;
const ExternalValue* fValue;
};
struct FieldData {
StringFragment fName;
const Type* fType;
const Variable* fOwner;
int fFieldIndex;
};
struct FieldAccessData {
const Type* fType;
int fFieldIndex;
FieldAccessOwnerKind fOwnerKind;
};
struct FloatLiteralData {
const Type* fType;
float fValue;
};
struct ForStatementData {
std::shared_ptr<SymbolTable> fSymbolTable;
};
struct FunctionCallData {
const Type* fType;
const FunctionDeclaration* fFunction;
};
struct FunctionDeclarationData {
StringFragment fName;
mutable const FunctionDefinition* fDefinition;
ModifiersPool::Handle fModifiersHandle;
// FIXME after killing fExpressionChildren / fStatementChildren in favor of just fChildren,
// the parameters should move into that vector
std::vector<const Variable*> fParameters;
const Type* fReturnType;
bool fBuiltin;
FunctionDeclarationData& operator=(const FunctionDeclarationData& other) {
fName = other.fName;
fDefinition = other.fDefinition;
fModifiersHandle = other.fModifiersHandle;
fParameters = other.fParameters;
fReturnType = other.fReturnType;
fBuiltin = other.fBuiltin;
return *this;
}
};
struct FunctionDefinitionData {
const FunctionDeclaration* fDeclaration;
bool fBuiltin;
// We track intrinsic functions we reference so that we can ensure that all of them end up
// copied into the final output.
std::unordered_set<const FunctionDeclaration*> fReferencedIntrinsics;
// This pointer may be null, and even when non-null is not guaranteed to remain valid for
// the entire lifespan of this object. The parse tree's lifespan is normally controlled by
// IRGenerator, so the IRGenerator being destroyed or being used to compile another file
// will invalidate this pointer.
const ASTNode* fSource;
};
struct FunctionReferenceData {
const Type* fType;
std::vector<const FunctionDeclaration*> fFunctions;
};
struct IfStatementData {
bool fIsStatic;
};
struct InterfaceBlockData {
const Variable* fVariable;
String fTypeName;
String fInstanceName;
std::shared_ptr<SymbolTable> fTypeOwner;
};
struct IntLiteralData {
const Type* fType;
int64_t fValue;
};
struct InlineMarkerData {
const FunctionDeclaration* fFunction;
};
struct ModifiersDeclarationData {
ModifiersPool::Handle fModifiersHandle;
};
struct SectionData {
String fName;
String fArgument;
String fText;
};
struct SettingData {
String fName;
const Type* fType;
};
struct SwizzleData {
const Type* fType;
std::vector<int> fComponents;
};
struct SymbolData {
StringFragment fName;
const Type* fType;
};
struct SymbolAliasData {
StringFragment fName;
const Symbol* fOrigSymbol;
};
struct TypeReferenceData {
const Type* fType;
const Type* fValue;
};
struct TypeTokenData {
const Type* fType;
Token::Kind fToken;
};
struct UnresolvedFunctionData {
// FIXME move this into the child vector after killing fExpressionChildren /
// fStatementChildren
std::vector<const FunctionDeclaration*> fFunctions;
};
struct VarDeclarationData {
const Type* fBaseType;
const Variable* fVar;
};
struct VariableData {
StringFragment fName;
const Type* fType;
const Expression* fInitialValue = nullptr;
ModifiersPool::Handle fModifiersHandle;
// Tracks how many sites read from the variable. If this is zero for a non-out variable (or
// becomes zero during optimization), the variable is dead and may be eliminated.
mutable int16_t fReadCount;
// Tracks how many sites write to the variable. If this is zero, the variable is dead and
// may be eliminated.
mutable int16_t fWriteCount;
VariableStorage fStorage;
bool fBuiltin;
};
struct VariableReferenceData {
const Variable* fVariable;
VariableRefKind fRefKind;
};
struct NodeData {
enum class Kind {
kBlock,
kBoolLiteral,
kEnum,
kExternalValue,
kField,
kFieldAccess,
kFloatLiteral,
kForStatement,
kFunctionCall,
kFunctionDeclaration,
kFunctionDefinition,
kFunctionReference,
kIfStatement,
kInlineMarker,
kInterfaceBlock,
kIntLiteral,
kModifiersDeclaration,
kSection,
kSetting,
kString,
kSwizzle,
kSymbol,
kSymbolAlias,
kType,
kTypeReference,
kTypeToken,
kUnresolvedFunction,
kVarDeclaration,
kVariable,
kVariableReference,
} fKind = Kind::kType;
// it doesn't really matter what kind we default to, as long as it's a POD type
union Contents {
BlockData fBlock;
BoolLiteralData fBoolLiteral;
EnumData fEnum;
ExternalValueData fExternalValue;
FieldData fField;
FieldAccessData fFieldAccess;
FloatLiteralData fFloatLiteral;
ForStatementData fForStatement;
FunctionCallData fFunctionCall;
FunctionDeclarationData fFunctionDeclaration;
FunctionDefinitionData fFunctionDefinition;
FunctionReferenceData fFunctionReference;
IfStatementData fIfStatement;
InlineMarkerData fInlineMarker;
InterfaceBlockData fInterfaceBlock;
IntLiteralData fIntLiteral;
ModifiersDeclarationData fModifiersDeclaration;
SectionData fSection;
SettingData fSetting;
String fString;
SwizzleData fSwizzle;
SymbolData fSymbol;
SymbolAliasData fSymbolAlias;
const Type* fType;
TypeReferenceData fTypeReference;
TypeTokenData fTypeToken;
UnresolvedFunctionData fUnresolvedFunction;
VarDeclarationData fVarDeclaration;
VariableData fVariable;
VariableReferenceData fVariableReference;
Contents() {}
~Contents() {}
} fContents;
NodeData(const BlockData& data)
: fKind(Kind::kBlock) {
*(new(&fContents) BlockData) = data;
}
NodeData(const BoolLiteralData& data)
: fKind(Kind::kBoolLiteral) {
*(new(&fContents) BoolLiteralData) = data;
}
NodeData(const EnumData& data)
: fKind(Kind::kEnum) {
*(new(&fContents) EnumData) = data;
}
NodeData(const ExternalValueData& data)
: fKind(Kind::kExternalValue) {
*(new(&fContents) ExternalValueData) = data;
}
NodeData(const FieldData& data)
: fKind(Kind::kField) {
*(new(&fContents) FieldData) = data;
}
NodeData(const FieldAccessData& data)
: fKind(Kind::kFieldAccess) {
*(new(&fContents) FieldAccessData) = data;
}
NodeData(const FloatLiteralData& data)
: fKind(Kind::kFloatLiteral) {
*(new(&fContents) FloatLiteralData) = data;
}
NodeData(const ForStatementData& data)
: fKind(Kind::kForStatement) {
*(new(&fContents) ForStatementData) = data;
}
NodeData(const FunctionCallData& data)
: fKind(Kind::kFunctionCall) {
*(new(&fContents) FunctionCallData) = data;
}
NodeData(const FunctionDeclarationData& data)
: fKind(Kind::kFunctionDeclaration) {
*(new(&fContents) FunctionDeclarationData) = data;
}
NodeData(const FunctionDefinitionData& data)
: fKind(Kind::kFunctionDefinition) {
*(new(&fContents) FunctionDefinitionData) = data;
}
NodeData(const FunctionReferenceData& data)
: fKind(Kind::kFunctionReference) {
*(new(&fContents) FunctionReferenceData) = data;
}
NodeData(IfStatementData data)
: fKind(Kind::kIfStatement) {
*(new(&fContents) IfStatementData) = data;
}
NodeData(InlineMarkerData data)
: fKind(Kind::kInlineMarker) {
*(new(&fContents) InlineMarkerData) = data;
}
NodeData(InterfaceBlockData data)
: fKind(Kind::kInterfaceBlock) {
*(new(&fContents) InterfaceBlockData) = data;
}
NodeData(IntLiteralData data)
: fKind(Kind::kIntLiteral) {
*(new(&fContents) IntLiteralData) = data;
}
NodeData(ModifiersDeclarationData data)
: fKind(Kind::kModifiersDeclaration) {
*(new(&fContents) ModifiersDeclarationData) = data;
}
NodeData(const SectionData& data)
: fKind(Kind::kSection) {
*(new(&fContents) SectionData) = data;
}
NodeData(const SettingData& data)
: fKind(Kind::kSetting) {
*(new(&fContents) SettingData) = data;
}
NodeData(const String& data)
: fKind(Kind::kString) {
*(new(&fContents) String) = data;
}
NodeData(const SwizzleData& data)
: fKind(Kind::kSwizzle) {
*(new(&fContents) SwizzleData) = data;
}
NodeData(const SymbolData& data)
: fKind(Kind::kSymbol) {
*(new(&fContents) SymbolData) = data;
}
NodeData(const SymbolAliasData& data)
: fKind(Kind::kSymbolAlias) {
*(new(&fContents) SymbolAliasData) = data;
}
NodeData(const Type* data)
: fKind(Kind::kType) {
*(new(&fContents) const Type*) = data;
}
NodeData(const TypeReferenceData& data)
: fKind(Kind::kTypeReference) {
*(new(&fContents) TypeReferenceData) = data;
}
NodeData(const TypeTokenData& data)
: fKind(Kind::kTypeToken) {
*(new(&fContents) TypeTokenData) = data;
}
NodeData(const UnresolvedFunctionData& data)
: fKind(Kind::kUnresolvedFunction) {
*(new(&fContents) UnresolvedFunctionData) = data;
}
NodeData(const VarDeclarationData& data)
: fKind(Kind::kVarDeclaration) {
*(new(&fContents) VarDeclarationData) = data;
}
NodeData(const VariableData& data)
: fKind(Kind::kVariable) {
*(new(&fContents) VariableData) = data;
}
NodeData(const VariableReferenceData& data)
: fKind(Kind::kVariableReference) {
*(new(&fContents) VariableReferenceData) = data;
}
NodeData(const NodeData& other) {
*this = other;
}
NodeData& operator=(const NodeData& other) {
this->cleanup();
fKind = other.fKind;
switch (fKind) {
case Kind::kBlock:
*(new(&fContents) BlockData) = other.fContents.fBlock;
break;
case Kind::kBoolLiteral:
*(new(&fContents) BoolLiteralData) = other.fContents.fBoolLiteral;
break;
case Kind::kEnum:
*(new(&fContents) EnumData) = other.fContents.fEnum;
break;
case Kind::kExternalValue:
*(new(&fContents) ExternalValueData) = other.fContents.fExternalValue;
break;
case Kind::kField:
*(new(&fContents) FieldData) = other.fContents.fField;
break;
case Kind::kFieldAccess:
*(new(&fContents) FieldAccessData) = other.fContents.fFieldAccess;
break;
case Kind::kFloatLiteral:
*(new(&fContents) FloatLiteralData) = other.fContents.fFloatLiteral;
break;
case Kind::kForStatement:
*(new(&fContents) ForStatementData) = other.fContents.fForStatement;
break;
case Kind::kFunctionCall:
*(new(&fContents) FunctionCallData) = other.fContents.fFunctionCall;
break;
case Kind::kFunctionDeclaration:
*(new(&fContents) FunctionDeclarationData) =
other.fContents.fFunctionDeclaration;
break;
case Kind::kFunctionDefinition:
*(new(&fContents) FunctionDefinitionData) = other.fContents.fFunctionDefinition;
break;
case Kind::kFunctionReference:
*(new(&fContents) FunctionReferenceData) = other.fContents.fFunctionReference;
break;
case Kind::kIfStatement:
*(new(&fContents) IfStatementData) = other.fContents.fIfStatement;
break;
case Kind::kInlineMarker:
*(new(&fContents) InlineMarkerData) = other.fContents.fInlineMarker;
break;
case Kind::kInterfaceBlock:
*(new(&fContents) InterfaceBlockData) = other.fContents.fInterfaceBlock;
break;
case Kind::kIntLiteral:
*(new(&fContents) IntLiteralData) = other.fContents.fIntLiteral;
break;
case Kind::kModifiersDeclaration:
*(new(&fContents) ModifiersDeclarationData) =
other.fContents.fModifiersDeclaration;
break;
case Kind::kSection:
*(new(&fContents) SectionData) = other.fContents.fSection;
break;
case Kind::kSetting:
*(new(&fContents) SettingData) = other.fContents.fSetting;
break;
case Kind::kString:
*(new(&fContents) String) = other.fContents.fString;
break;
case Kind::kSwizzle:
*(new(&fContents) SwizzleData) = other.fContents.fSwizzle;
break;
case Kind::kSymbol:
*(new(&fContents) SymbolData) = other.fContents.fSymbol;
break;
case Kind::kSymbolAlias:
*(new(&fContents) SymbolAliasData) = other.fContents.fSymbolAlias;
break;
case Kind::kType:
*(new(&fContents) const Type*) = other.fContents.fType;
break;
case Kind::kTypeReference:
*(new(&fContents) TypeReferenceData) = other.fContents.fTypeReference;
break;
case Kind::kTypeToken:
*(new(&fContents) TypeTokenData) = other.fContents.fTypeToken;
break;
case Kind::kUnresolvedFunction:
*(new(&fContents) UnresolvedFunctionData) = other.fContents.fUnresolvedFunction;
break;
case Kind::kVarDeclaration:
*(new(&fContents) VarDeclarationData) = other.fContents.fVarDeclaration;
break;
case Kind::kVariable:
*(new(&fContents) VariableData) = other.fContents.fVariable;
break;
case Kind::kVariableReference:
*(new(&fContents) VariableReferenceData) = other.fContents.fVariableReference;
break;
}
return *this;
}
~NodeData() {
this->cleanup();
}
private:
void cleanup() {
switch (fKind) {
case Kind::kBlock:
fContents.fBlock.~BlockData();
break;
case Kind::kBoolLiteral:
fContents.fBoolLiteral.~BoolLiteralData();
break;
case Kind::kEnum:
fContents.fEnum.~EnumData();
break;
case Kind::kExternalValue:
fContents.fExternalValue.~ExternalValueData();
break;
case Kind::kField:
fContents.fField.~FieldData();
break;
case Kind::kFieldAccess:
fContents.fFieldAccess.~FieldAccessData();
break;
case Kind::kFloatLiteral:
fContents.fFloatLiteral.~FloatLiteralData();
break;
case Kind::kForStatement:
fContents.fForStatement.~ForStatementData();
break;
case Kind::kFunctionCall:
fContents.fFunctionCall.~FunctionCallData();
break;
case Kind::kFunctionDeclaration:
fContents.fFunctionDeclaration.~FunctionDeclarationData();
break;
case Kind::kFunctionDefinition:
fContents.fFunctionDefinition.~FunctionDefinitionData();
break;
case Kind::kFunctionReference:
fContents.fFunctionReference.~FunctionReferenceData();
break;
case Kind::kIfStatement:
fContents.fIfStatement.~IfStatementData();
break;
case Kind::kInlineMarker:
fContents.fInlineMarker.~InlineMarkerData();
break;
case Kind::kInterfaceBlock:
fContents.fInterfaceBlock.~InterfaceBlockData();
break;
case Kind::kIntLiteral:
fContents.fIntLiteral.~IntLiteralData();
break;
case Kind::kModifiersDeclaration:
fContents.fModifiersDeclaration.~ModifiersDeclarationData();
break;
case Kind::kSection:
fContents.fSection.~SectionData();
break;
case Kind::kSetting:
fContents.fSetting.~SettingData();
break;
case Kind::kString:
fContents.fString.~String();
break;
case Kind::kSwizzle:
fContents.fSwizzle.~SwizzleData();
break;
case Kind::kSymbol:
fContents.fSymbol.~SymbolData();
break;
case Kind::kSymbolAlias:
fContents.fSymbolAlias.~SymbolAliasData();
break;
case Kind::kType:
break;
case Kind::kTypeReference:
fContents.fTypeReference.~TypeReferenceData();
break;
case Kind::kTypeToken:
fContents.fTypeToken.~TypeTokenData();
break;
case Kind::kUnresolvedFunction:
fContents.fUnresolvedFunction.~UnresolvedFunctionData();
break;
case Kind::kVarDeclaration:
fContents.fVarDeclaration.~VarDeclarationData();
break;
case Kind::kVariable:
fContents.fVariable.~VariableData();
break;
case Kind::kVariableReference:
fContents.fVariableReference.~VariableReferenceData();
break;
}
}
};
IRNode(int offset, int kind, const BlockData& data, StatementArray stmts);
IRNode(int offset, int kind, const BoolLiteralData& data);
IRNode(int offset, int kind, const EnumData& data);
IRNode(int offset, int kind, const ExternalValueData& data);
IRNode(int offset, int kind, const FieldData& data);
IRNode(int offset, int kind, const FieldAccessData& data);
IRNode(int offset, int kind, const FloatLiteralData& data);
IRNode(int offset, int kind, const ForStatementData& data);
IRNode(int offset, int kind, const FunctionCallData& data);
IRNode(int offset, int kind, const FunctionDeclarationData& data);
IRNode(int offset, int kind, const FunctionDefinitionData& data);
IRNode(int offset, int kind, const FunctionReferenceData& data);
IRNode(int offset, int kind, const IfStatementData& data);
IRNode(int offset, int kind, const InlineMarkerData& data);
IRNode(int offset, int kind, const InterfaceBlockData& data);
IRNode(int offset, int kind, const IntLiteralData& data);
IRNode(int offset, int kind, const ModifiersDeclarationData& data);
IRNode(int offset, int kind, const SectionData& data);
IRNode(int offset, int kind, const SettingData& data);
IRNode(int offset, int kind, const String& data);
IRNode(int offset, int kind, const SwizzleData& data);
IRNode(int offset, int kind, const SymbolData& data);
IRNode(int offset, int kind, const SymbolAliasData& data);
IRNode(int offset, int kind, const Type* data = nullptr);
IRNode(int offset, int kind, const TypeReferenceData& data);
IRNode(int offset, int kind, const TypeTokenData& data);
IRNode(int offset, int kind, const UnresolvedFunctionData& data);
IRNode(int offset, int kind, const VarDeclarationData& data);
IRNode(int offset, int kind, const VariableData& data);
IRNode(int offset, int kind, const VariableReferenceData& data);
Expression& expressionChild(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return *fExpressionChildren[index];
}
std::unique_ptr<Expression>& expressionPointer(int index) {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
const std::unique_ptr<Expression>& expressionPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
int expressionChildCount() const {
return fExpressionChildren.size();
}
Statement& statementChild(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return *fStatementChildren[index];
}
std::unique_ptr<Statement>& statementPointer(int index) {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
const std::unique_ptr<Statement>& statementPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
int statementChildCount() const {
return fStatementChildren.size();
}
BlockData& blockData() {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return fData.fContents.fBlock;
}
const BlockData& blockData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return fData.fContents.fBlock;
}
const BoolLiteralData& boolLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBoolLiteral);
return fData.fContents.fBoolLiteral;
}
const EnumData& enumData() const {
SkASSERT(fData.fKind == NodeData::Kind::kEnum);
return fData.fContents.fEnum;
}
const ExternalValueData& externalValueData() const {
SkASSERT(fData.fKind == NodeData::Kind::kExternalValue);
return fData.fContents.fExternalValue;
}
const FieldData& fieldData() const {
SkASSERT(fData.fKind == NodeData::Kind::kField);
return fData.fContents.fField;
}
const FieldAccessData& fieldAccessData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFieldAccess);
return fData.fContents.fFieldAccess;
}
const FloatLiteralData& floatLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFloatLiteral);
return fData.fContents.fFloatLiteral;
}
const ForStatementData& forStatementData() const {
SkASSERT(fData.fKind == NodeData::Kind::kForStatement);
return fData.fContents.fForStatement;
}
const FunctionCallData& functionCallData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionCall);
return fData.fContents.fFunctionCall;
}
FunctionDeclarationData& functionDeclarationData() {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionDeclaration);
return fData.fContents.fFunctionDeclaration;
}
const FunctionDeclarationData& functionDeclarationData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionDeclaration);
return fData.fContents.fFunctionDeclaration;
}
FunctionDefinitionData& functionDefinitionData() {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionDefinition);
return fData.fContents.fFunctionDefinition;
}
const FunctionDefinitionData& functionDefinitionData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionDefinition);
return fData.fContents.fFunctionDefinition;
}
const FunctionReferenceData& functionReferenceData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionReference);
return fData.fContents.fFunctionReference;
}
const IfStatementData& ifStatementData() const {
SkASSERT(fData.fKind == NodeData::Kind::kIfStatement);
return fData.fContents.fIfStatement;
}
const InlineMarkerData& inlineMarkerData() const {
SkASSERT(fData.fKind == NodeData::Kind::kInlineMarker);
return fData.fContents.fInlineMarker;
}
InterfaceBlockData& interfaceBlockData() {
SkASSERT(fData.fKind == NodeData::Kind::kInterfaceBlock);
return fData.fContents.fInterfaceBlock;
}
const InterfaceBlockData& interfaceBlockData() const {
SkASSERT(fData.fKind == NodeData::Kind::kInterfaceBlock);
return fData.fContents.fInterfaceBlock;
}
const IntLiteralData& intLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kIntLiteral);
return fData.fContents.fIntLiteral;
}
const ModifiersDeclarationData& modifiersDeclarationData() const {
SkASSERT(fData.fKind == NodeData::Kind::kModifiersDeclaration);
return fData.fContents.fModifiersDeclaration;
}
const SectionData& sectionData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSection);
return fData.fContents.fSection;
}
const SettingData& settingData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSetting);
return fData.fContents.fSetting;
}
const String& stringData() const {
SkASSERT(fData.fKind == NodeData::Kind::kString);
return fData.fContents.fString;
}
SwizzleData& swizzleData() {
SkASSERT(fData.fKind == NodeData::Kind::kSwizzle);
return fData.fContents.fSwizzle;
}
const SwizzleData& swizzleData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSwizzle);
return fData.fContents.fSwizzle;
}
SymbolData& symbolData() {
SkASSERT(fData.fKind == NodeData::Kind::kSymbol);
return fData.fContents.fSymbol;
}
const SymbolData& symbolData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSymbol);
return fData.fContents.fSymbol;
}
const SymbolAliasData& symbolAliasData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSymbolAlias);
return fData.fContents.fSymbolAlias;
}
const Type* typeData() const {
SkASSERT(fData.fKind == NodeData::Kind::kType);
return fData.fContents.fType;
}
const TypeReferenceData& typeReferenceData() const {
SkASSERT(fData.fKind == NodeData::Kind::kTypeReference);
return fData.fContents.fTypeReference;
}
const TypeTokenData& typeTokenData() const {
SkASSERT(fData.fKind == NodeData::Kind::kTypeToken);
return fData.fContents.fTypeToken;
}
const UnresolvedFunctionData& unresolvedFunctionData() const {
SkASSERT(fData.fKind == NodeData::Kind::kUnresolvedFunction);
return fData.fContents.fUnresolvedFunction;
}
VarDeclarationData& varDeclarationData() {
SkASSERT(fData.fKind == NodeData::Kind::kVarDeclaration);
return fData.fContents.fVarDeclaration;
}
const VarDeclarationData& varDeclarationData() const {
SkASSERT(fData.fKind == NodeData::Kind::kVarDeclaration);
return fData.fContents.fVarDeclaration;
}
VariableData& variableData() {
SkASSERT(fData.fKind == NodeData::Kind::kVariable);
return fData.fContents.fVariable;
}
const VariableData& variableData() const {
SkASSERT(fData.fKind == NodeData::Kind::kVariable);
return fData.fContents.fVariable;
}
VariableReferenceData& variableReferenceData() {
SkASSERT(fData.fKind == NodeData::Kind::kVariableReference);
return fData.fContents.fVariableReference;
}
const VariableReferenceData& variableReferenceData() const {
SkASSERT(fData.fKind == NodeData::Kind::kVariableReference);
return fData.fContents.fVariableReference;
}
int fKind;
NodeData fData;
// Needing two separate vectors is a temporary issue. Ideally, we'd just be able to use a single
// vector of nodes, but there are various spots where we take pointers to std::unique_ptr<>,
// and it isn't safe to pun std::unique_ptr<IRNode> to std::unique_ptr<Statement / Expression>.
// And we can't update the call sites to expect std::unique_ptr<IRNode> while there are still
// old-style nodes around.
// When the transition is finished, we'll be able to drop the unique_ptrs and just handle
// <IRNode> directly.
ExpressionArray fExpressionChildren;
// it's important to keep the statement array defined after (and thus destroyed before) fData,
// because destroying statements can modify reference counts in a SymbolTable contained in fData
StatementArray fStatementChildren;
};
} // namespace SkSL
#endif