| /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #ifndef GrPathUtils_DEFINED | 
 | #define GrPathUtils_DEFINED | 
 |  | 
 | #include "SkGeometry.h" | 
 | #include "SkRect.h" | 
 | #include "SkPathPriv.h" | 
 | #include "SkTArray.h" | 
 |  | 
 | class SkMatrix; | 
 |  | 
 | /** | 
 |  *  Utilities for evaluating paths. | 
 |  */ | 
 | namespace GrPathUtils { | 
 |     // Very small tolerances will be increased to a minimum threshold value, to avoid division | 
 |     // problems in subsequent math. | 
 |     SkScalar scaleToleranceToSrc(SkScalar devTol, | 
 |                                  const SkMatrix& viewM, | 
 |                                  const SkRect& pathBounds); | 
 |  | 
 |     int worstCasePointCount(const SkPath&, | 
 |                             int* subpaths, | 
 |                             SkScalar tol); | 
 |  | 
 |     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol); | 
 |  | 
 |     uint32_t generateQuadraticPoints(const SkPoint& p0, | 
 |                                      const SkPoint& p1, | 
 |                                      const SkPoint& p2, | 
 |                                      SkScalar tolSqd, | 
 |                                      SkPoint** points, | 
 |                                      uint32_t pointsLeft); | 
 |  | 
 |     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol); | 
 |  | 
 |     uint32_t generateCubicPoints(const SkPoint& p0, | 
 |                                  const SkPoint& p1, | 
 |                                  const SkPoint& p2, | 
 |                                  const SkPoint& p3, | 
 |                                  SkScalar tolSqd, | 
 |                                  SkPoint** points, | 
 |                                  uint32_t pointsLeft); | 
 |  | 
 |     // A 2x3 matrix that goes from the 2d space coordinates to UV space where | 
 |     // u^2-v = 0 specifies the quad. The matrix is determined by the control | 
 |     // points of the quadratic. | 
 |     class QuadUVMatrix { | 
 |     public: | 
 |         QuadUVMatrix() {} | 
 |         // Initialize the matrix from the control pts | 
 |         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); } | 
 |         void set(const SkPoint controlPts[3]); | 
 |  | 
 |         /** | 
 |          * Applies the matrix to vertex positions to compute UV coords. This | 
 |          * has been templated so that the compiler can easliy unroll the loop | 
 |          * and reorder to avoid stalling for loads. The assumption is that a | 
 |          * path renderer will have a small fixed number of vertices that it | 
 |          * uploads for each quad. | 
 |          * | 
 |          * N is the number of vertices. | 
 |          * STRIDE is the size of each vertex. | 
 |          * UV_OFFSET is the offset of the UV values within each vertex. | 
 |          * vertices is a pointer to the first vertex. | 
 |          */ | 
 |         template <int N, size_t STRIDE, size_t UV_OFFSET> | 
 |         void apply(const void* vertices) const { | 
 |             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices); | 
 |             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET; | 
 |             float sx = fM[0]; | 
 |             float kx = fM[1]; | 
 |             float tx = fM[2]; | 
 |             float ky = fM[3]; | 
 |             float sy = fM[4]; | 
 |             float ty = fM[5]; | 
 |             for (int i = 0; i < N; ++i) { | 
 |                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr); | 
 |                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr); | 
 |                 uv->fX = sx * xy->fX + kx * xy->fY + tx; | 
 |                 uv->fY = ky * xy->fX + sy * xy->fY + ty; | 
 |                 xyPtr += STRIDE; | 
 |                 uvPtr += STRIDE; | 
 |             } | 
 |         } | 
 |     private: | 
 |         float fM[6]; | 
 |     }; | 
 |  | 
 |     // Input is 3 control points and a weight for a bezier conic. Calculates the | 
 |     // three linear functionals (K,L,M) that represent the implicit equation of the | 
 |     // conic, k^2 - lm. | 
 |     // | 
 |     // Output: klm holds the linear functionals K,L,M as row vectors: | 
 |     // | 
 |     //     | ..K.. |   | x |      | k | | 
 |     //     | ..L.. | * | y |  ==  | l | | 
 |     //     | ..M.. |   | 1 |      | m | | 
 |     // | 
 |     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm); | 
 |  | 
 |     // Converts a cubic into a sequence of quads. If working in device space | 
 |     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The | 
 |     // result is sets of 3 points in quads. | 
 |     void convertCubicToQuads(const SkPoint p[4], | 
 |                              SkScalar tolScale, | 
 |                              SkTArray<SkPoint, true>* quads); | 
 |  | 
 |     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to | 
 |     // ensure that the new control point lies between the lines ab and cd. The | 
 |     // convex path renderer requires this. It starts with a path where all the | 
 |     // control points taken together form a convex polygon. It relies on this | 
 |     // property and the quadratic approximation of cubics step cannot alter it. | 
 |     // This variation enforces this constraint. The cubic must be simple and dir | 
 |     // must specify the orientation of the contour containing the cubic. | 
 |     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4], | 
 |                                                 SkScalar tolScale, | 
 |                                                 SkPathPriv::FirstDirection dir, | 
 |                                                 SkTArray<SkPoint, true>* quads); | 
 |  | 
 |     enum class ExcludedTerm { | 
 |         kNonInvertible, | 
 |         kQuadraticTerm, | 
 |         kLinearTerm | 
 |     }; | 
 |  | 
 |     // Computes the inverse-transpose of the cubic's power basis matrix, after removing a specific | 
 |     // row of coefficients. | 
 |     // | 
 |     // E.g. if the cubic is defined in power basis form as follows: | 
 |     // | 
 |     //                                         | x3   y3   0 | | 
 |     //     C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | x2   y2   0 | | 
 |     //                                         | x1   y1   0 | | 
 |     //                                         | x0   y0   1 | | 
 |     // | 
 |     // And the excluded term is "kQuadraticTerm", then the resulting inverse-transpose will be: | 
 |     // | 
 |     //     | x3   y3   0 | -1 T | 
 |     //     | x1   y1   0 | | 
 |     //     | x0   y0   1 | | 
 |     // | 
 |     // (The term to exclude is chosen based on maximizing the resulting matrix determinant.) | 
 |     // | 
 |     // This can be used to find the KLM linear functionals: | 
 |     // | 
 |     //     | ..K.. |   | ..kcoeffs.. | | 
 |     //     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix | 
 |     //     | ..M.. |   | ..mcoeffs.. | | 
 |     // | 
 |     // NOTE: the same term that was excluded here must also be removed from the corresponding column | 
 |     // of the klmcoeffs matrix. | 
 |     // | 
 |     // Returns which row of coefficients was removed, or kNonInvertible if the cubic was degenerate. | 
 |     ExcludedTerm calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4], SkMatrix* out); | 
 |  | 
 |     // Computes the KLM linear functionals for the cubic implicit form. The "right" side of the | 
 |     // curve (when facing in the direction of increasing parameter values) will be the area that | 
 |     // satisfies: | 
 |     // | 
 |     //     k^3 < l*m | 
 |     // | 
 |     // Output: | 
 |     // | 
 |     // klm: Holds the linear functionals K,L,M as row vectors: | 
 |     // | 
 |     //          | ..K.. |   | x |      | k | | 
 |     //          | ..L.. | * | y |  ==  | l | | 
 |     //          | ..M.. |   | 1 |      | m | | 
 |     // | 
 |     // NOTE: the KLM lines are calculated in the same space as the input control points. If you | 
 |     // transform the points the lines will also need to be transformed. This can be done by mapping | 
 |     // the lines with the inverse-transpose of the matrix used to map the points. | 
 |     // | 
 |     // t[],s[]: These are set to the two homogeneous parameter values at which points the lines L&M | 
 |     // intersect with K (See SkClassifyCubic). | 
 |     // | 
 |     // Returns the cubic's classification. | 
 |     SkCubicType getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2], double s[2]); | 
 |  | 
 |     // Chops the cubic bezier passed in by src, at the double point (intersection point) | 
 |     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for | 
 |     // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1. | 
 |     // Return value: | 
 |     // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics, | 
 |     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr | 
 |     // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics, | 
 |     //             dst[0..3] and dst[3..6] if dst is not nullptr | 
 |     // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic, | 
 |     //             src[0..3] | 
 |     // | 
 |     // Output: | 
 |     // | 
 |     // klm: Holds the linear functionals K,L,M as row vectors. (See getCubicKLM().) | 
 |     // | 
 |     // loopIndex: This value will tell the caller which of the chopped sections (if any) are the | 
 |     //            actual loop. A value of -1 means there is no loop section. The caller can then use | 
 |     //            this value to decide how/if they want to flip the orientation of this section. | 
 |     //            The flip should be done by negating the k and l values as follows: | 
 |     // | 
 |     //            KLM.postScale(-1, -1) | 
 |     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm, | 
 |                                     int* loopIndex); | 
 |  | 
 |     // When tessellating curved paths into linear segments, this defines the maximum distance | 
 |     // in screen space which a segment may deviate from the mathmatically correct value. | 
 |     // Above this value, the segment will be subdivided. | 
 |     // This value was chosen to approximate the supersampling accuracy of the raster path (16 | 
 |     // samples, or one quarter pixel). | 
 |     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25); | 
 |  | 
 |     // We guarantee that no quad or cubic will ever produce more than this many points | 
 |     static const int kMaxPointsPerCurve = 1 << 10; | 
 | }; | 
 | #endif |