blob: 5878a92f1e950e641a816f6a2d2635c6e49d78ed [file] [log] [blame]
/*
* Copyright 2023 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h"
#ifndef SK_USE_DRAWING_MIPMAP_DOWNSAMPLER
#include "include/private/SkColorData.h"
#include "src/base/SkHalf.h"
#include "src/base/SkVx.h"
#include "src/core/SkMipmap.h"
namespace {
struct ColorTypeFilter_8888 {
typedef uint32_t Type;
static skvx::Vec<4, uint16_t> Expand(uint32_t x) {
return skvx::cast<uint16_t>(skvx::byte4::Load(&x));
}
static uint32_t Compact(const skvx::Vec<4, uint16_t>& x) {
uint32_t r;
skvx::cast<uint8_t>(x).store(&r);
return r;
}
};
struct ColorTypeFilter_565 {
typedef uint16_t Type;
static uint32_t Expand(uint16_t x) {
return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
}
static uint16_t Compact(uint32_t x) {
return ((x & ~SK_G16_MASK_IN_PLACE) & 0xFFFF) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
}
};
struct ColorTypeFilter_4444 {
typedef uint16_t Type;
static uint32_t Expand(uint16_t x) {
return (x & 0xF0F) | ((x & ~0xF0F) << 12);
}
static uint16_t Compact(uint32_t x) {
return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
}
};
struct ColorTypeFilter_8 {
typedef uint8_t Type;
static unsigned Expand(unsigned x) {
return x;
}
static uint8_t Compact(unsigned x) {
return (uint8_t)x;
}
};
struct ColorTypeFilter_Alpha_F16 {
typedef uint16_t Type;
static skvx::float4 Expand(uint16_t x) {
uint64_t x4 = (uint64_t)x; // add 0s out to four lanes (0,0,0,x)
return from_half(skvx::half4::Load(&x4));
}
static uint16_t Compact(const skvx::float4& x) {
uint64_t r;
to_half(x).store(&r);
return r & 0xFFFF; // but ignore the extra 3 here
}
};
struct ColorTypeFilter_RGBA_F16 {
typedef uint64_t Type; // SkHalf x4
static skvx::float4 Expand(uint64_t x) {
return from_half(skvx::half4::Load(&x));
}
static uint64_t Compact(const skvx::float4& x) {
uint64_t r;
to_half(x).store(&r);
return r;
}
};
struct ColorTypeFilter_88 {
typedef uint16_t Type;
static uint32_t Expand(uint16_t x) {
return (x & 0xFF) | ((x & ~0xFF) << 8);
}
static uint16_t Compact(uint32_t x) {
return (x & 0xFF) | ((x >> 8) & ~0xFF);
}
};
struct ColorTypeFilter_1616 {
typedef uint32_t Type;
static uint64_t Expand(uint32_t x) {
return (x & 0xFFFF) | ((x & ~0xFFFF) << 16);
}
static uint16_t Compact(uint64_t x) {
return (x & 0xFFFF) | ((x >> 16) & ~0xFFFF);
}
};
struct ColorTypeFilter_F16F16 {
typedef uint32_t Type;
static skvx::float4 Expand(uint32_t x) {
uint64_t x4 = (uint64_t)x; // // add 0s out to four lanes (0,0,x,x)
return from_half(skvx::half4::Load(&x4));
}
static uint32_t Compact(const skvx::float4& x) {
uint64_t r;
to_half(x).store(&r);
return (uint32_t) (r & 0xFFFFFFFF); // but ignore the extra 2 here
}
};
struct ColorTypeFilter_16161616 {
typedef uint64_t Type;
static skvx::Vec<4, uint32_t> Expand(uint64_t x) {
return skvx::cast<uint32_t>(skvx::Vec<4, uint16_t>::Load(&x));
}
static uint64_t Compact(const skvx::Vec<4, uint32_t>& x) {
uint64_t r;
skvx::cast<uint16_t>(x).store(&r);
return r;
}
};
struct ColorTypeFilter_16 {
typedef uint16_t Type;
static uint32_t Expand(uint16_t x) {
return x;
}
static uint16_t Compact(uint32_t x) {
return (uint16_t) x;
}
};
struct ColorTypeFilter_1010102 {
typedef uint32_t Type;
static uint64_t Expand(uint64_t x) {
return (((x ) & 0x3ff) ) |
(((x >> 10) & 0x3ff) << 20) |
(((x >> 20) & 0x3ff) << 40) |
(((x >> 30) & 0x3 ) << 60);
}
static uint32_t Compact(uint64_t x) {
return (((x ) & 0x3ff) ) |
(((x >> 20) & 0x3ff) << 10) |
(((x >> 40) & 0x3ff) << 20) |
(((x >> 60) & 0x3 ) << 30);
}
};
template <typename T> T add_121(const T& a, const T& b, const T& c) {
return a + b + b + c;
}
template <typename T> T shift_right(const T& x, int bits) {
return x >> bits;
}
skvx::float4 shift_right(const skvx::float4& x, int bits) {
return x * (1.0f / (1 << bits));
}
template <typename T> T shift_left(const T& x, int bits) {
return x << bits;
}
skvx::float4 shift_left(const skvx::float4& x, int bits) {
return x * (1 << bits);
}
//
// To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
// If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
// In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
// else for even cases, we just use a 2x box filter.
//
// This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
// src pixels we need to sample in each dimension to produce 1 dst pixel.
//
// OpenGL expects a full mipmap stack to contain anisotropic space as well.
// This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
// Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c10 = F::Expand(p1[0]);
auto c = c00 + c10;
d[i] = F::Compact(shift_right(c, 1));
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c10 = F::Expand(p1[0]);
auto c20 = F::Expand(p2[0]);
auto c = add_121(c00, c10, c20);
d[i] = F::Compact(shift_right(c, 2));
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c = c00 + c01;
d[i] = F::Compact(shift_right(c, 1));
p0 += 2;
}
}
template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c10 = F::Expand(p1[0]);
auto c11 = F::Expand(p1[1]);
auto c = c00 + c10 + c01 + c11;
d[i] = F::Compact(shift_right(c, 2));
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c10 = F::Expand(p1[0]);
auto c11 = F::Expand(p1[1]);
auto c20 = F::Expand(p2[0]);
auto c21 = F::Expand(p2[1]);
auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
d[i] = F::Compact(shift_right(c, 3));
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto d = static_cast<typename F::Type*>(dst);
auto c02 = F::Expand(p0[0]);
for (int i = 0; i < count; ++i) {
auto c00 = c02;
auto c01 = F::Expand(p0[1]);
c02 = F::Expand(p0[2]);
auto c = add_121(c00, c01, c02);
d[i] = F::Compact(shift_right(c, 2));
p0 += 2;
}
}
template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
// Given pixels:
// a0 b0 c0 d0 e0 ...
// a1 b1 c1 d1 e1 ...
// We want:
// (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8
// (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8
// ...
auto c0 = F::Expand(p0[0]);
auto c1 = F::Expand(p1[0]);
auto c = c0 + c1;
for (int i = 0; i < count; ++i) {
auto a = c;
auto b0 = F::Expand(p0[1]);
auto b1 = F::Expand(p1[1]);
auto b = b0 + b0 + b1 + b1;
c0 = F::Expand(p0[2]);
c1 = F::Expand(p1[2]);
c = c0 + c1;
auto sum = a + b + c;
d[i] = F::Compact(shift_right(sum, 3));
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
// Given pixels:
// a0 b0 c0 d0 e0 ...
// a1 b1 c1 d1 e1 ...
// a2 b2 c2 d2 e2 ...
// We want:
// (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
// (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
// ...
auto c0 = F::Expand(p0[0]);
auto c1 = F::Expand(p1[0]);
auto c2 = F::Expand(p2[0]);
auto c = add_121(c0, c1, c2);
for (int i = 0; i < count; ++i) {
auto a = c;
auto b0 = F::Expand(p0[1]);
auto b1 = F::Expand(p1[1]);
auto b2 = F::Expand(p2[1]);
auto b = shift_left(add_121(b0, b1, b2), 1);
c0 = F::Expand(p0[2]);
c1 = F::Expand(p1[2]);
c2 = F::Expand(p2[2]);
c = add_121(c0, c1, c2);
auto sum = a + b + c;
d[i] = F::Compact(shift_right(sum, 4));
p0 += 2;
p1 += 2;
p2 += 2;
}
}
typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
struct HQDownSampler : SkMipmapDownSampler {
FilterProc* proc_1_2 = nullptr;
FilterProc* proc_1_3 = nullptr;
FilterProc* proc_2_1 = nullptr;
FilterProc* proc_2_2 = nullptr;
FilterProc* proc_2_3 = nullptr;
FilterProc* proc_3_1 = nullptr;
FilterProc* proc_3_2 = nullptr;
FilterProc* proc_3_3 = nullptr;
void buildLevel(const SkPixmap& dst, const SkPixmap& src) override;
};
void HQDownSampler::buildLevel(const SkPixmap& dst, const SkPixmap& src) {
const int width = src.width();
const int height = src.height();
FilterProc* proc;
if (height & 1) {
if (height == 1) { // src-height is 1
if (width & 1) { // src-width is 3
proc = proc_3_1;
} else { // src-width is 2
proc = proc_2_1;
}
} else { // src-height is 3
if (width & 1) {
if (width == 1) { // src-width is 1
proc = proc_1_3;
} else { // src-width is 3
proc = proc_3_3;
}
} else { // src-width is 2
proc = proc_2_3;
}
}
} else { // src-height is 2
if (width & 1) {
if (width == 1) { // src-width is 1
proc = proc_1_2;
} else { // src-width is 3
proc = proc_3_2;
}
} else { // src-width is 2
proc = proc_2_2;
}
}
const void* srcBasePtr = src.addr();
const size_t srcRB = src.rowBytes();
void* dstBasePtr = dst.writable_addr();
for (int y = 0; y < dst.height(); y++) {
proc(dstBasePtr, srcBasePtr, srcRB, dst.width());
srcBasePtr = (const char*)srcBasePtr + srcRB * 2; // jump two rows
dstBasePtr = ( char*)dstBasePtr + dst.rowBytes();
}
}
} // namespace
std::unique_ptr<SkMipmapDownSampler> SkMipmap::MakeDownSampler(const SkPixmap& root) {
FilterProc* proc_1_2 = nullptr;
FilterProc* proc_1_3 = nullptr;
FilterProc* proc_2_1 = nullptr;
FilterProc* proc_2_2 = nullptr;
FilterProc* proc_2_3 = nullptr;
FilterProc* proc_3_1 = nullptr;
FilterProc* proc_3_2 = nullptr;
FilterProc* proc_3_3 = nullptr;
switch (root.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
break;
case kRGB_565_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
break;
case kARGB_4444_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
break;
case kAlpha_8_SkColorType:
case kGray_8_SkColorType:
case kR8_unorm_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_RGBA_F16>;
proc_1_3 = downsample_1_3<ColorTypeFilter_RGBA_F16>;
proc_2_1 = downsample_2_1<ColorTypeFilter_RGBA_F16>;
proc_2_2 = downsample_2_2<ColorTypeFilter_RGBA_F16>;
proc_2_3 = downsample_2_3<ColorTypeFilter_RGBA_F16>;
proc_3_1 = downsample_3_1<ColorTypeFilter_RGBA_F16>;
proc_3_2 = downsample_3_2<ColorTypeFilter_RGBA_F16>;
proc_3_3 = downsample_3_3<ColorTypeFilter_RGBA_F16>;
break;
case kR8G8_unorm_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_88>;
proc_1_3 = downsample_1_3<ColorTypeFilter_88>;
proc_2_1 = downsample_2_1<ColorTypeFilter_88>;
proc_2_2 = downsample_2_2<ColorTypeFilter_88>;
proc_2_3 = downsample_2_3<ColorTypeFilter_88>;
proc_3_1 = downsample_3_1<ColorTypeFilter_88>;
proc_3_2 = downsample_3_2<ColorTypeFilter_88>;
proc_3_3 = downsample_3_3<ColorTypeFilter_88>;
break;
case kR16G16_unorm_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_1616>;
proc_1_3 = downsample_1_3<ColorTypeFilter_1616>;
proc_2_1 = downsample_2_1<ColorTypeFilter_1616>;
proc_2_2 = downsample_2_2<ColorTypeFilter_1616>;
proc_2_3 = downsample_2_3<ColorTypeFilter_1616>;
proc_3_1 = downsample_3_1<ColorTypeFilter_1616>;
proc_3_2 = downsample_3_2<ColorTypeFilter_1616>;
proc_3_3 = downsample_3_3<ColorTypeFilter_1616>;
break;
case kA16_unorm_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_16>;
proc_1_3 = downsample_1_3<ColorTypeFilter_16>;
proc_2_1 = downsample_2_1<ColorTypeFilter_16>;
proc_2_2 = downsample_2_2<ColorTypeFilter_16>;
proc_2_3 = downsample_2_3<ColorTypeFilter_16>;
proc_3_1 = downsample_3_1<ColorTypeFilter_16>;
proc_3_2 = downsample_3_2<ColorTypeFilter_16>;
proc_3_3 = downsample_3_3<ColorTypeFilter_16>;
break;
case kRGBA_1010102_SkColorType:
case kBGRA_1010102_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_1010102>;
proc_1_3 = downsample_1_3<ColorTypeFilter_1010102>;
proc_2_1 = downsample_2_1<ColorTypeFilter_1010102>;
proc_2_2 = downsample_2_2<ColorTypeFilter_1010102>;
proc_2_3 = downsample_2_3<ColorTypeFilter_1010102>;
proc_3_1 = downsample_3_1<ColorTypeFilter_1010102>;
proc_3_2 = downsample_3_2<ColorTypeFilter_1010102>;
proc_3_3 = downsample_3_3<ColorTypeFilter_1010102>;
break;
case kA16_float_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_Alpha_F16>;
proc_1_3 = downsample_1_3<ColorTypeFilter_Alpha_F16>;
proc_2_1 = downsample_2_1<ColorTypeFilter_Alpha_F16>;
proc_2_2 = downsample_2_2<ColorTypeFilter_Alpha_F16>;
proc_2_3 = downsample_2_3<ColorTypeFilter_Alpha_F16>;
proc_3_1 = downsample_3_1<ColorTypeFilter_Alpha_F16>;
proc_3_2 = downsample_3_2<ColorTypeFilter_Alpha_F16>;
proc_3_3 = downsample_3_3<ColorTypeFilter_Alpha_F16>;
break;
case kR16G16_float_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_F16F16>;
proc_1_3 = downsample_1_3<ColorTypeFilter_F16F16>;
proc_2_1 = downsample_2_1<ColorTypeFilter_F16F16>;
proc_2_2 = downsample_2_2<ColorTypeFilter_F16F16>;
proc_2_3 = downsample_2_3<ColorTypeFilter_F16F16>;
proc_3_1 = downsample_3_1<ColorTypeFilter_F16F16>;
proc_3_2 = downsample_3_2<ColorTypeFilter_F16F16>;
proc_3_3 = downsample_3_3<ColorTypeFilter_F16F16>;
break;
case kR16G16B16A16_unorm_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_16161616>;
proc_1_3 = downsample_1_3<ColorTypeFilter_16161616>;
proc_2_1 = downsample_2_1<ColorTypeFilter_16161616>;
proc_2_2 = downsample_2_2<ColorTypeFilter_16161616>;
proc_2_3 = downsample_2_3<ColorTypeFilter_16161616>;
proc_3_1 = downsample_3_1<ColorTypeFilter_16161616>;
proc_3_2 = downsample_3_2<ColorTypeFilter_16161616>;
proc_3_3 = downsample_3_3<ColorTypeFilter_16161616>;
break;
case kUnknown_SkColorType:
case kRGB_888x_SkColorType: // TODO: use 8888?
case kRGB_101010x_SkColorType: // TODO: use 1010102?
case kBGR_101010x_SkColorType: // TODO: use 1010102?
case kBGR_101010x_XR_SkColorType: // TODO: use 1010102?
case kBGRA_10101010_XR_SkColorType:
case kRGBA_10x6_SkColorType:
case kRGBA_F32_SkColorType:
return nullptr;
case kSRGBA_8888_SkColorType: // TODO: needs careful handling
return nullptr;
}
auto sampler = std::make_unique<HQDownSampler>();
sampler->proc_1_2 = proc_1_2;
sampler->proc_1_3 = proc_1_3;
sampler->proc_2_1 = proc_2_1;
sampler->proc_2_2 = proc_2_2;
sampler->proc_2_3 = proc_2_3;
sampler->proc_3_1 = proc_3_1;
sampler->proc_3_2 = proc_3_2;
sampler->proc_3_3 = proc_3_3;
return sampler;
}
#endif